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This paper proposes a novel, comprehensive stoichiometric thermodynamic equilibrium model to forecast
the chemical compositions of syngas from a downdraft gasifier for various biomass fuels. The principal objec-
tive of this model is to predict the chemical compositions of syngas while reducing the individual percentage
error in the estimation of moles of different species, hence attaining a minimal Root Mean Square Error
(RMSE). Model is prepared as available in literature and then modified for the different kind of fuels and
biomasses to minimize error in prediction. The model is developed to find out two modified equilibrium con-
stants, 1.01 and 0.65 for water-gas-shift reaction and methane reaction respectively in thermodynamic equi-
librium model (TEM) which can be applicable to all types of fuels. This will make this comprehensive stochio-
metric thermodynamic equilibrium model a generalized for all kind of fuels. Many researchers have modified
the thermodynamic equilibrium models for different kind of fuels, which makes their model fuel specific. Here

the model prepared is generalized for all kind of fuels.
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1. Introduction

The energy demand of the world is continuously ris-
ing. This has resulted in increased environmental pollu-
tion. There is a need to bring and promote the technolo-
gies which may be utilized to generate energy from con-
ventional and unconventional fuel without polluting en-
vironment. ‘“Biomass gasification - a thermochemical
conversion of biomass” may be considered to produce a
high-quality syngas (clean fuel) in the gasifier and is con-
sidered as a “Carbon-neutral” fuel[1].

Gasification is typically conducted in one of three
principal kinds of gasifiers: fixed bed, fluidized bed, and
entrained flow gasifiers. Every type of gasifier has ad-
vantages and disadvantages [2], but a survey of gasifiers
in countries of Europe, Canada, and the United States in-
dicates that downdraft gasifiers are the predominant kind.
Seventy-five percent (75 %) are downdraft, twenty per-
cent (20 %) are fluidized beds, two-point five percent
(2.5 %) are updraft, and two-point five percent (2.5 %)
comprise various other types[1].

The effective functioning of a downdraft gasifier re-
lies on various aspects, including chemical reactions, dif-
ferent operational parameters, design of reactor, and fuel
compositions. The gasification process, along with syn-
gas quality and gasifier performance, is significantly af-
fected by various operational factors, including the flow
rates of both feedstock and gasifying medium, equiva-
lence ratio, and the reactor's pressure and temperature. In
addition to operation parameters, composition and ther-
mochemical properties of feedstock affects the
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gasification process and end products. As a result, the
modeling approach may be applied to any reactive sys-
tem to determine the impact of operational parameters
such as moisture content (MC), equivalence ratio (ER),
and fuel mixture ratio on producer gas composition, heat-
ing value, and cold gas efficiency.

TEMs are designed for reacting systems using either
stoichiometric or non-stoichiometric techniques. Stoichi-
ometric equilibrium models are founded on the equilib-
rium constant and can be formulated by integrating
chemical and thermodynamic reactions. Using free en-
ergy data, the equilibrium constant for specific reaction
may be calculated. In the stoichiometric method, not all
reactions are accounted for, leading to the exclusion of
less significant events, which may cause deviations in
model predictions. The stoichiometric equilibrium model
accounts just for species with the minimum free energy
of production. The predominant species under gasifica-
tion conditions (temperature range of 600 to 1500 K) in-
clude CO, CO,, Hy, H20, CHa, N2, and solid carbon[3].

Numerous models exist in the literature for the bio-
mass and coal gasification process in downdraft gasifiers.
Conclusion of thorough study of these models shows,
models are either fuel specific or some parameter spe-
cific. A more advanced model is required that can be gen-
eralized for all types of fuels. The modifications done to
the TEM are for accurate prediction for particular fuels
only. Parmar et al.[2] compared many models and find-
ings of them are tabulated to get the overall idea of kind
of modifications done to the models to improve model’s
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accuracy. Zainal et al.[4] has prepared a TEM to forecast
the effect of Moisture Content (MC) on producer gas
compositions and effect of gasification temperature on
Calorific Value (CV). The limitation of this model is, it
takes gasification temperature of 800 °C constant for par-
ametric study. Jayah et al.[5] developed a model to ex-
amine the influence of chip size, MC, temperature of inlet
air, heat loss, and throat angle on conversion efficiency.
The model was employed to ascertain the variation of the
CO:Hz ratio with fuel MC at a constant pressure. The pro-
jected methane quantity was modified to match the ex-
perimentally measured amount of methane in the pro-
duced gas. This model was fuel specific for rubber wood.
S. Jarungthammachote et al. [6] has used modified TEM
for municipal solid waste. They have introduced coeffi-
cient of 0.91 for the equilibrium constant of water-gas-
shift reaction (Kwgs) and 11.28 for equilibrium constant
of methane reaction (Kp).

Darshit et al.[7] has prepared a modified TEM to
calibrate his experimental work and to predict the effect
of ER on the performance of the gasifier. Fuel used here
for experimental work is mixture of lignite (70%) and
sawdust pallets (30 %) respectively. The correction fac-
tor for equilibrium constants of methane reaction (Km)
and water-gas-shift reaction (Kwgs) are formulated by us-
ing regression method. These correction factors are based
on ER only.

Aydin et al.[8] formulated a semi empirical equilib-
rium model for downdraft gasification systems to fore-
cast the syngas compositions, as well as the yields of tar
and char from various wood-based fuels across different
equivalence ratios. The model proposed by Chaurasia [9]
integrates crucial effects of the pyrolysis fraction and
char reactivity factor in its simulations for downdraft bi-
omass gasification. Patra et al. [10] proposed a dynamic
multiphase model that combines mass and energy trans-
fer with kinetics for wood gasification in a downdraft
gasifier. A stochiometric and non-stochiometric model
proposed to study parameter effects in the gasification
process of a feedstock in downdraft gasifiers [11], [12],
[13]. Babu and Seth[14] presented a modified model for
reduction zone of downdraft biomass gasifier incorporat-
ing the variation of the char reactivity factor (CRF). A
mathematical model for studying the effect of fuel/air ra-
tio and the moisture content of the biomass on producer
gas composition is presented by Melgar et al. [15]. Gao
and Li [16] proposed a model to predict the behavior of
global fixed bed biomass gasification reactor. An equi-
librium model is also proposed by numerous research-
ers[17], [18], [19].

This paper develops a novel comprehensive thermo-
dynamic equilibrium model to simulate the gasification
process of various fuels and biomass. The integration of
mass balance, energy balance, and equilibrium constant
equations provide a method for estimating gas composi-
tions. The model was then adjusted to enhance its predic-
tive accuracy by multiplying equilibrium constants with
corrective factors. This model seeks to improve the fore-
casting precision of TEM across a wide range of fuels,
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positioning it as a versatile model rather than one tailored
to a specific fuel type.

2. The Model

The thermodynamic equilibrium model defines the
feedstock as CHxOyN,, with the global gasification reac-
tion process expressed as follows:

CH,O,N, + wH,0 + m(0, + 3.76N,) =
ny,Hy + 1ncoCO + g, CO, + 1y, 0H,0 + gy, CH, +
(2+3.76m) N, 1)

In this context, suffixes x, y, and z signify the
amounts of hydrogen, oxygen, and nitrogen atoms, re-
spectively, per carbon atom in the feedstock. Addition-
ally, w signifies the amount of moisture per kmol of feed-
stock, while m indicates the quantity of oxygen per kmol
of feedstock.

From the ultimate analysis of fuel/feedstock (Table
2) the percentage of carbon, hydrogen, oxygen, nitrogen,
sulphur and ash is determined. From the known percent-
age of different constituents, the number of atoms can be
calculated by following expressions:

_ H%XM¢
T c%xMy’

_ 0%xMc¢
C%xMg’

_ N%XM¢
T C%xMy

@)

In the aforementioned equation, 'C%', 'H%', 'O%",
and 'N%' represent the mass fractions of carbon, hydro-
gen, oxygen, and nitrogen in the fuel, whereas ‘Mi" de-
notes their molecular weights. The variable ‘w’ in Equa-
tion 1 denotes the molar amount of water per kilomole of
fuel mixture, whereas ‘m’ signifies the molar quantity of
oxygen per kilomole of fuel mixture, which is contingent
upon the stoichiometric molar quantity of oxygen and the
equivalence ratio; it may be computed using the follow-
ing expression:

MpyeXWC Xy
=m m=ER><(1+Z—E) (3)
where ‘ER’ is equivalence ratio and ‘WC’ is mois-

ture content in fuel.

Every input on the left side of Equation (1) is set to
25 °C. The number of moles of species %’ that are un-
known is represented by ‘i’ on the right-hand side.

2.1.  Model assumptions

The gasifier may be seen as thermodynamic system,
whereby biomass enters and producer gas exits the reac-
tor. The model assumes that the feedstock for a gasifier
is composed of carbon, hydrogen, oxygen, and nitrogen,
with no sulphur or other minerals. The gasifier operates
under steady state conditions with uniform temperature
and pressure. The reaction is auto thermal, with high tem-
perature and fast reaction rates. The products are CO,
CO3, Hz, H20, CH4, and N, with higher order hydrocar-
bons neglected. Nitrogen is considered an inert gas, and
no tar is present in the product gas. All gases behave ide-
ally, and ash is an inert substance[20].
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Mass balance

To identify the five unknown species, a total of five
equations is necessary. Among these five equations, three
are derived from the conservation of elemental mass in
the reactants and products, while the other two are based
on the connection of equilibrium constants.

Carbon balance:

2.2.

1 =n¢o +ngo, +ncy, (4)
Hydrogen balance:

X+ 2w = 2ny, + 2ny,0 + 4ncy, (5)
Oxygen balance:

w+2m+y =ng + 2nco, + Nyyo (6)

2.3.  The thermodynamic equilibrium

Chemical equilibrium is often elucidated using two
distinct approaches: the reduction of Gibbs free energy or
the application of an equilibrium constant. The current
thermodynamic equilibrium model is formulated based
on the equilibrium constant rather than the Gibbs free en-
ergy. To analyse the global gasification process, a total
of five equations are necessary for resolution. Three
equations are derived from mass balance, while the other
two are generated from the equilibrium constants of the
reactions happening in the gasification zone, as seen be-
low.

Boudouard reaction:

C+C0O, & 2C0 (+172 M] /kmol) (7

Steam forming reaction:

CH, + H,0 < CO + 3H, (+206 M] /kmol)

(8)
C+2H, & CH, (=75 M]/kmol) 9)
Water gas reaction:
C + H,0 & CO+ H, (+131 MJ/kmol) (10)
Water gas shift reaction:
CO + H,0 & CO, + H, (—41 M]/kmol) (11)

Methane reaction:

To create the equilibrium model, the reactions must
be identified and confirmed for their independence. If the
chosen reactions belong to a certain group and none can
be expressed as a combination of at least two others, this
group is termed independent. If the generated group lacks
independence, the model may compute redundant infor-
mation. When unconverted carbon persists in the equilib-
rium state, three distinct processes must be accounted for
to finalize the equilibrium model. If three independent re-
actions must be selected, then 10 possible groups may be
formed from equations 07-11. Of the 10 groupings, two
are dependent, while the remaining eight are independ-
ent.[11]. There is no compelling rationale to choose one
independent group over another for the validation of the
model against experimental results. Numerous scholars
have examined the solid (unconverted carbon or char) re-
sult in the global gasification process and produced a
model.[21], [22]. The water-gas-shift reaction (Eqn-11)
and Methane reaction (Eqn-9) were used by S.
Jarungthammachote et al.[6], [7] and many more for their
models.
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As discussed earlier, three equations are generated
using mass balance of elements, two more equations are
formulated for methane and water-gas-shift reactions
(Egs. 9, 11).

Methane reaction:

C + 2H, & CH, (=75 M]/kmol)

Water gas shift reaction:

CO + H,0 « CO, + H, (—41 MJ/kmol)

2.4.  The equilibrium constant formulation

Assuming all gases participating in the process ex-
hibit perfect behaviour and all reactions occur at low
working pressure (1 atmosphere), the equilibrium con-
stant for methane and water-gas-shift reactions as a func-
tion of their molar content may be expressed as follows:

PcH ncH
m= = (12)
(PHz) (nﬂz)
K _ PcosPH, _ ncopnH, (13)
W85 PcoPH,0  NCONH,0

Egs. (14) and (15) were used for the equilibrium
state of ideal gas mixture because of the requirements of
Km and Kugs values

InK = —2¢°r (14)

RT _
AGOT = Zi Vi Agof,T,i (15)
Where R is the universal gas constant,

8.314 kJ/kmol K, AG° ; is the standard Gibbs function of
reaction, and Ag° £ represents the standard Gibbs

function of formation at given temperature T of the gas
species i which can be expressed by the empirical equa-
tion below

=0 — o ! B2 C_’ 3 _
A, =h% —a'TIn(T) = b'T (2)T
d"\ g e’ , ,
(D) +(E)+f +gT (16)
The values of coefficients a’- g’ and enthalpy of for-
mation of the gases are presented in Table 3.[6]

2.5. Energy Balance

The gasification zone temperature must be esti-
mated to determine the equilibrium constants (Egs. 12-
13). For this reason, either an energy or enthalpy balance
was done for the gasification process, which was nor-
mally believed to be an adiabatic process.[4].

The enthalpy balance for the gasification process
may be expressed as follows, with the gasification zone
temperature denoted as T and the input state temperature
assumed to be 298 K.

Yj=react h°f,j = Tizproa ni(h%f,; + AR°r))

a7

Where ﬁof‘j is the enthalpy of formation in kJ/kmol
and for all chemical elements at reference state (298 K
and 1 atm) its value is zero. AR°;; represents the en-
thalpy difference between any given state and at refer-
ence state. It can be approximated by

ARy = [, C,(T)dT (18)
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Where (fp(T) is specific heat at constant pressure in
kJ/kmol-K and is a function of temperature. It can be de-
fined by empirical equation below

Cp(T) = a+ bT +cT? +dT?

Where T is temperature in K and

Jyoo Co(T)AT = aT + bT? + ¢T3 + dT* + k

(20)

Where Kk is a constant obtained from the integration
and a, b, ¢, and d are the specific gas species coefficients,
which are shown in Table 4[23]

Equation 17 can be rewritten as

Z]’:react h_fjo = Zi:prod ni Eio + [(Ziniai)T +
Xinb)T? + (Zinic)T? + (Xinid)T* + (X nk;)]
(21)
To find the enthalpy of formation for any solid fuel
in reactant, De Souza-Satos[24] suggested

}_lof,fuel = LHV + Zk:product [nk(}_lof)k] (22)
where (Fz"f)k represents the enthalpy of formation

of product ‘k’ during the entire combustion of the solid
fuel, and LHV denotes the lower heating value of the
solid fuel in kJ/kmol. The temperature in the gasification
zone may now be computed from Eq. (17) using the New-
ton-Raphson approach. This correlation can forecast the
reaction temperature based on the quantity of oxygen pre-
sent. This makes the model an effective instrument for
demonstrating the fluctuation in reaction temperature
when the mole of oxygen is altered.

Formula for finding the enthalpy of formation of
solid fuel in reactant is (HHV in MJ/kg) [25]

HHV (M]/kg) = 03491 X C% + 1.1783 x
H% + 0.1005 X 5% — 0.1034 X 0% — 0.0151 X

(19)

N% — 0.0211 x A% (23)
_ _ 9XH%Xhfg
LHV = HHY — (Z2202) (24)
2.6. Calculation Procedure
To calculate the values of

Ny, Ncos Nco,» My, ANd Ny, an initial temperature was
assumed and used into Egs. (16) and (14) to initially com-
pute K, and K,, 5. Then both the equilibrium constants
were substituted into Eqs. (12) and (13) respectively. The
five simultaneous equations, Egs. (4), (5), (6), (12), and
(13), were ultimately solved using the Newton-Raphson
technique. Using Eqn. (21), the new value of temperature
is calculated. The specified method was repeated until the
temperature value converged. The computation tech-
nique is shown in Figure 1. The initial model which is
TEM is termed as M1.

3. Validation and modification in the
model

The model constructed (M1) in this work was eval-
uated by juxtaposing the computational findings with the
experimental data found in the literature. Table 2 presents
a total of 17 distinct fuels together with their experi-
mental findings used for model testing. The root-mean-
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square error (RMSE) quantifies the discrepancy in this
comparison and is defined as

N L 32
RMSE = [ELERizMod)” (E"”‘D Mody) (25)

where D is the number of data values, Exp is the
value derived from the experimental results, and Mod is
the value projected by the model.[6]

Considering different fuels from research articles of
many researchers, it is found that the number of moles of
different species varies in the range of following

Tab. 1 Name of species with percentage of moles and
effect on RMSE

Sr. No. Name of Number of  Effect of % error
Species  moles (%) of to- of individual on
tal moles RMSE
1 CO 16 % to 24 % Moderate
2 CO, 11%to 17 % Moderate
3 CH, 2%to4 % Minimum
4 H, 12 % to 20 % Moderate

It is very much clear from data that CH4 varies from
2 % to 4 % only. Considering very low value of CHa, it
is obvious that its impact on RMSE value is very less.
This model neglects individual percentage error of CHa.
Remaining species values are calculated using algorithm
as mentioned in figure 1. Total 17 cases are taken for cal-
culation of moles of species. (Table 2)

After testing all the biomass/feedstock into model,
the results predicted by model is as below in Table 5. In-
itial model M1 predicts the average moles of CO more by
16.71 %, moles of CO; less by 6.11 %, moles of H, more
by 28.79 %, moles of Nz less by 12.3 %

As mentioned in above table, to reduce the RMSE
and individual percentage error, the major concern is to
focus on moles of CO, CO,, and H; and not on the CHa.
A new improved model is made to minimize the RMSE
and individual percentage errors by doing certain modi-
fications in Model M1.

Many studies indicate that the TEM requires correc-
tion factors to accurately predict syngas compositions.
Numerous researchers have proposed correction factors
for equilibrium constants; however, these factors are spe-
cific to individual fuels and lack general applicability.
This study aims to derive a generalised correction factor
applicable to any fuel or biomass. The modified model
is designated as M2. This novel approach is outlined se-
quentially as follows:

The TEM is initially applied to the collection of fuels
or biomass for which experimental results are documented
in the literature. Following the application of the TEM to
the fuel/biomass, the results are compared with experi-
mental values for validation purposes. The TEM results
are deemed reliable. Researchers typically employ the
RMSE method to compare model predictions with experi-
mental values. Although the RMSE values are approxi-
mately 6 or lower, it is occasionally noted that individual
percentage errors in predictions can be significantly high.
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Fig. 1 Flowchart for calculation process of TEM (M1)

Tab. 2[7] Ultimate and proximate analysis of fuels

Components Ultimate Analysis Proximate Analysis
C H 0] N FC VM MC Ash HHV
Biomass/Feedstock wt%  wt%  wt%  wt%  wt%  wt% wt%  wt% Ref.
db db db db db db db db MJ/kg
Aspen Chips 4930 550 4520 N/A 1470 8490 6.80 0.40 19.88 [26]
Wood Chip 46.50 5.80 4350 0.20 1430 6090 21.70 3.90 18.66 [27]
HWC 20 52.58 6.61 41.05 0.10 N/A N/A NA 114 18.71 [28]
Wood 50.60 6.50 42.00 020 19.20 80.10 14.00 0.70 20.50 [5]
Rubber Wood 50.70 6.90 4240 0.30 N/A N/A 758 0.39 18.86 [29]
Corn Cobs 4760 6.10 4578 052 17.82 80.06 10.01 2.12 18.56 [30]
Soft Wood 49.20 6.20 4406 0.08 1520 79.20 5.20 0.40 19.00 [31]
Depleted pomace 51.31 6.40 3501 2.00 NA NA 6.80 5.00 NA

Wood Pellets 48.91 5.80 4511 0.8 17.27 80.63 9.50 2.10 18.40 [30]
Rice Husk 49.44 6.25 4377 054 1545 67.95 1250 16.60 15.60 [30]
Eucalyptus 46.78 5.92 4555 0.32 1566 83.01 1223 134 18.78 [32]
Municipal Solid Waste  50.60 6.50 42.00 0.20 NA NA 16.00 0.70 NA [6]
Wood sawdust pellets  48.91 580 4511 018 17.27 80.63 950 210 18.43 [33]
Mixed Wood 48.77 5.85 4452 0.05 1280 75.80 10.60 0.80 17.30 [31]
Oil Palm Fronds 42.40 5.80 4820 360 1150 8510 N/A 340 15.72 [34]
Vine Pruning 50.84 582 4246 088 1654 80.84 17.60 2.62 18.10 [30]
Lignite aqgr‘é"o"d MX- 5780 493 5550 163 NA NA 1200 000  NA [20]
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Tab. 3 The values of h_fo(kJ/mol) and coefficients of the empirical equation for Agy7° (kJ/mol) [6]

Compound  hf a b' c d e' f g
CO 1105 5.619x10% -1.190 x 10° 6.383x 10° -1.846 x 10" -4.891 x 102 8.684 x 10" -6.131 x 102
CO: -393.5 -1.949x 102 -3.122 x 10° -2.448 x 108 6.946 x 102 -4.891 x 10>  5.270 -1.20 x 101
H->0 -241.8 -8.950 x 10 -3.62x10% 5.209x 10° -1.478 x 1012 0.00 2.868 -1.722 x 102
CH,4 -74.8 -4.620x 102 1.130x 10° 1.319x 10® -6.647 x 102 -4.891 x 10? 1.411x 10* -2.234x 10?
Tab. 4 The coefficients of specific heat for the empirical equation [6]
Gas Species a b c d Temperature Range (K)
Hydrogen 29.11  -1.92x10-3 4.0030 x 10-6 -8.7040 x 10-10 273-1800
Carbon monoxide  28.16  1.68 x 10-3 5.3720 x 10-6 -2.2220 x 10-9 273-1800
Carbon dioxide 22.26  5.98x10-2 -3.5010 x 10-5 -7.4690 x 10-9 273-1800
Water vapour 3224 192x10-3 1.0550 x 10-5 -3.5950 x 10-9 273-1800
Methane 19.89  5.20x10-2 1.2690 x 10-5 -1.1010 x 10-8 273-1800
Nitrogen 2890 -1.57x10-3 8.0810 x 10-6 -2.8730 x 10-9 273-1800

A novel approach is applied to the TEM to reduce indi-
vidual percentage error and, consequently, RMSE. Liter-
ature indicates that correction factors enhance the accu-
racy of model predictions. Optimisation techniques are
employed to identify the optimal correction factor that
minimises the RMSE. This model utilises two independ-
ent reactions: the methane reaction and the water-gas
shift reaction. The value of ‘Ky’ is initially optimised
while maintaining ‘Kwgs* constant to assess its impact on
RMSE. The ‘Kn’ corresponding to the minimum RMSE
has been recorded. The same process is employed for
‘Kwgs “optimisation. The model is then tested for simulta-
neous values of the newly optimised ‘Kp” and ‘Kuygs .

The RSME identified a minimum in this instance.
This protocol is applied consistently across all 17 fuels
and biomasses. The results were analysed in relation to
the experimental values and the predicted values from
TEM ML1. After the application of both modified equilib-
rium constants, a decrease in the RMSE value is ob-
served, along with a simultaneous reduction in individual
percentage errors. The procedure is illustrated in the
flowchart below (Figure 2).

Results as tabulated in Table 5 shows that average
of individual percentage error decreases, and hence the
results are more accurate compared to model M1

4. Results and discussion

Due to variations in design, the producer gases gen-
erated by downdraft gasifiers exhibit distinct composi-
tions. Prediction results of two models M1 and M2 are
tabulated in Table 5.

The two distinct coefficients are obtained from
model M2 for the equilibrium constants Ky, and Kugs.
After multiplying the coefficients by the equilibrium con-
stants, two modified equilibrium constants, 1.01 and 0.65
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were obtained. These numbers were derived from the av-
erage of 17 distinct fuels.

| Optimization for K, I

Calculate
Follow above algorithm
to recalculate moles of
each species,
Temperature and RMSE

Calculate
= Change the value of
K only keeping Kug.
from above
Calculation

No Yes

Optimization for K,g. I

Calculate
Follow above algorithm
to recalculate moles of
each species,
Temperature and RMSE

Calculate
Change the value of
Kwgs only keeping Km
from above Calculation

Fig. 2 Optimization for Km and Kwgs

The M1 model estimates the average moles of CO
for 17 fuels to be 23.55, above the experimental value of
20.18, which is more by 16.71 %. The estimated moles
of CO; are 10.97, which is 6.11 % lower than the experi-
mental value of 11.68.
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The moles of H2 are estimated at 21.03, surpassing the
experimental value of 16.33 by 28.79 %. The revised
model M2 yields more precise findings. For CO, the
value is 21.45 compared to 20.18; for COy, it is 12.76
compared to 11.68; and for H, it is 16.08 compared to
16.33. Figure 3 compares the prediction of moles of CO
for all 17 fuels for M1 and M2. Figure 4 shows the aver-
age value of 17 fuels’ moles of CO. Same way, Figure 5
to 12 compares for different species. Figure 13 compares
RMSE in case of M1 and M2, which clearly indicates the
decrement is RMSE. Figure 14 to 18 compares individual
percentage error of CO, CO2, CH4, Hz, and N of 17 fuels.
It is found that M2 decreases the RMSE and individual
percentage error too. Except two fuels the individual per-
centage error is within +/- 25 %.

Looking at the graphs, it's clear that M2 has better
prediction accuracy than M1. Displayed in Figures 19
and 20, the moles of different species in percentage, the
parity plot makes it quite evident that both the RMSE and
individual percentage errors diminish. Figure 21 shows
the gasification temperature in Kelvin for all fuels.

5. Conclusion

The aim of this work is to determine two modified
equilibrium constants for the water-gas shift reaction and
the methane reaction, therefore rendering this model ge-
neric for application to other fuels and feedstocks. The
optimization approach was used to determine the modi-
fied equilibrium constants Kwgs and Kn. The modified
equilibrium constants of 1.01 and 0.65 for the water-gas
shift reaction and methane reaction, respectively, provide
optimal predictions of syngas compositions, exhibiting
minimal RMSE and individual percentage errors. The av-
erage RMSE value for all 17 fuels is 3.40. The fuel, a
blend of lignite and wood, has a distinct composition rel-
ative to other fuels and biomass, resulting in somewhat
varied prediction outcomes. For such fuels, modified
equilibrium constants 0.25 and 0.64 gives the more accu-
rate results.
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