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Rising demand for plastic materials results in increasing volumes of plastic waste generated globally. This
poses a question of waste collection and handling of the growing waste volumes. With quality limitations of
reuse and mechanical recycling, especially end-of-life mixed plastic waste is mostly landfilled, incinerated or
lost to environment. Thermochemical recycling, especially pyrolysis, has been historically explored as an at-
tractive alternative waste processing method with a potential to valorise the plastic waste into energy, fuels
and more recently also chemicals and virgin polymers. Thermochemical plastic waste processing and treatment
of the intermediates towards the final products have been found to be studied mostly in isolation. Therefore,
this study provides a combined view. Updated state of pilot and demonstration projects is reviewed. Typical
characteristics of plastic waste pyrolysis products are introduced and the areas of potential impacts on existing
plants are highlighted. In order to address the circularity and economic aspect, a summary of recent relevant
LCA and business studies is provided, showing common sensitivity factors and main assumptions used therein.
Overall, this review summarizes the background behind the recycling of waste plastics and presents it in context
of challenges and opportunities of integration with existing refining and petrochemical infrastructure.
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1. Introduction

Since the start of production of plastic materials in
1930s and 1940s, the industry has been rapidly expand-
ing after the World War |1, annual production of plastics
reached 390 Mt in 2021 (see Figure 1) and is poised to
double by 2035 and quadruple by 2050 [1,2]. The plastic
materials find utilization in a broad spectrum of indus-
tries and are hardly going to be replaced at scale by any
superior substitute materials in the foreseeable future.
The main raw materials used for production of plastics
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are natural gas/natural gas liquids and crude oil. In 2021
the global crude oil demand was 97.5 million barrels per
day (Mb/day) and is forecasted to grow by 8.4 % to
105.7 Mb/day in 2028 [3]. In perspective, the plastics
production volume accounts for ca 8 % of crude oil de-
mand in 2021. Over the past 30 years the demand for
plastics has been steadily increasing, whereas the demand
for transportation fuels has peaked and recently started to
decrease, putting more stress on the refiners to intensify
petrochemical feedstock production [3,4].
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Figure 1: Plastics production worldwide and in selected regions [4-7]
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Primary polymer building blocks, ethylene and pro-
pylene, are predominantly produced by steam cracking of
ethane, propane and Cs:+ hydrocarbons coming mainly
from natural gas condensates (NGLSs), shale gas, naphtha,
hydrogenated vacuum gasoil (HVGO). Total world in-
stalled ethylene capacity of steam crackers in 2015 was
143.7 Mt [8] and continues to be expanded and docu-
mented by recently awarded construction projects i.e.,
RLPP [9], Amiral [10], GCC [11].

Total world propylene installed capacity is 150 Mt
and poised to grow to 209 Mt by 2027 [12]. Steam crack-
ing and fluid catalytic cracking (FCC) account together
for almost 80% of the global propylene capacity, with
each sharing almost equally 40% [13].

Besides FCC and steam cracking, the third largest
(11 % share as of 2021) and quickly growing technology
to produce propylene is propane dehydrogenation (PDH)
with total world installed capacity of 17.2 Mt as of 2021
[13]. Rapid development has been registered in China
with more than 30 plants under construction or planned
since 2021 [14], and recent construction awards outside
of China such as Sonatrach, Algeria [15]. The abovemen-
tioned installations are large capital projects with major
operating cost spent on feedstock conversion step

(cracking in furnaces, conversion in the reactor) and sep-
aration/purification of reaction products (low tempera-
ture separation).

On the other side of the value chain, there is plastic
waste which has been historically landfilled and with in-
creasing waste quantities, coming mainly from polyeth-
ylene (PE), polypropylene (PP), polyethylene tereph-
thalate (PET) used for packaging, started to be collected
and either reused, mechanically recycled or incinerated,
refer to Table 1. Despite an increase in recycling and in-
cineration, the global landfilling volume was still increas-
ing in 2019, as shown in Table 1.

Mechanical recycling is limited by purity of the pre-
sorted and cleaned material and also by number of recy-
cling cycles. Each mechanical recycling loop reduces the
output material quality (downcycling). Incineration is a
subject to strict environmental regulations for flue gas
composition. Attempts have been made over the years to
chemically convert the plastics back to their original mon-
omers. Solvolysis is applied for condensation polymers.
Since monomers are highly yielded in this process, it is
also referred to as “Monomer recycling”. For addition pol-
ymer resins, thermal and/or catalytic cracking can be ap-
plied.

Table 1: Plastic waste collection and treatment (Mt) globally and in selected major regions (source: [23])

Waste route 2000 2002 2004 2006

Year

2008 2010 2012 2014 2016 2018 2019

World
Total Plastic Waste 156 174 195 215 231 255 276 296 320 342 353
Recycled 6 7 9 12 14 17 20 23 27 31 33
Incinerated 17 21 25 29 34 39 45 51 58 65 67
Landfilled 93 101 110 119 124 134 142 150 159 168 174
Mismanaged, Littered 41 45 51 56 59 64 69 72 76 78 79
OECD EU
Total Plastic Waste 33 35 38 40 41 43 45 46 47 50 51
Recycled 2 2 3 3 4 4 5 5 6 7 7
Incinerated 5 7 8 10 11 13 15 17 19 22 22
Landfilled 22 22 23 23 22 22 21 20 19 18 19
Mismanaged, Littered 4 4 4 4 4 4 3 3 3 2 2
USA
Total Plastic Waste 47 50 54 57 59 63 65 67 69 72 73
Recycled 1 1 2 2 2 2 2 3 3 3 3
Incinerated 7 8 9 10 11 12 12 13 14 14
Landfilled 35 37 40 42 44 46 48 49 51 52 53
Mismanaged, Littered 4 4 4 4 4 4 3 3 3 3 3
China
Total Plastic Waste 17 21 25 30 34 41 47 53 58 62 65
Recycled 1 1 2 2 3 4 5 6 7 8 8
Incinerated 2 2 3 5 7 9 11 13 15 16
Landfilled 4 6 7 9 10 13 15 18 20 22 24
Mismanaged, Littered 10 12 14 15 16 17 18 19 18 17 18
Other Asia
Total Plastic Waste 11 13 15 17 20 22 25 28 32 36 38
Recycled 1 1 1 1 1 2 2 2 3 4 4
Incinerated 2 2 3 4 4 5 6 7 8 10 10
Landfilled 5 6 6 7 7 8 9 10 11 12 12
Mismanaged, Littered 4 4 5 6 7 8 8 9 10 11 12
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Alternatively, direct co-processing of waste plastics
with conventional fossil feedstocks has been explored for
various conversion processes e.g. FCC, delayed coking,
hydrocracking/hydrotreating [16-21]. Since the products
primarily resemble crude oil and its fractions, this ap-
proach is referred to as “Feedstock recycling”.

Feedstock recycling is suitable primarily for pro-
cessing of end-of-life plastic waste, which would be too
costly, or impossible to sufficiently pre-treat for mechan-
ical recycling. Main products of the waste plastics con-
version processes are generally char/coke, oil and gas.
The oil and gas can be used for energy recovery in the
process, however, lately became of interest as feedstock
for fuels and petrochemical production.

Past experiences around the world have shown that
the economics of the waste plastic chemical recycling
plants was not favourable [21,22]. With the evolution in
polymer production and environmental regulations, is
there an opportunity in the current and future market to
sustainably integrate refining and petrochemical infra-
structure with end-of-life waste plastics recycling? What
would be an optimal configuration? What technical chal-
lenges have to be addressed? Technical and economic as-
pects of the integration are subject of this review in order
to explore the above stated-stated questions.

2. Plastic Waste Recycling as Part of Petro-
chemical and Refining Industry

Handling of plastic waste is to a large extent still
part of an open-loop process not only in terms of material
flow but also industrial structure. Petrochemical industry
produces the raw materials, manufacturers buy them to
produce end products and waste management industry
takes care of the disposed product collection, sorting, re-
use/mechanical recycling/incineration. Therefore, there
is very little end-to-end accountability and integration in
the fate of the produced materials. Under the circular
economy efforts, this is about to change as understanding
and mutual synergies between the refining/petrochemical
industry and waste management industry need to be
found, in order to close the material flow loop. This can
be documented by formation of alliances and partner-
ships between traditional petrochemical producers and
waste management companies structured around waste
plastics recycling e.g.
¢ LyondellBasell and Suez formed a joint venture called

QCP in 2020, where later LyondellBasell became a full
owner after buying the 50% share of Veolia (merged
with Suez in 2021/2022) [24]

e BASF with Quantafuel and Remondis signed a memo-
randum of understanding (MoU) to evaluate and coop-
erate in chemical recycling including a joint invest-
ment in a pyrolysis plant [25];

o Idemitsu Kosan created a joint venture with Environ-
mental Energy Co. Ltd in 2023 to produce oil from
used plastics in Japan [26];

e FCC, Cyclyx, Exxon Mobil and LyondellBasell signed
a collaboration agreement with the city of Houston,
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USA in 2022 to expand collection of plastic waste,
which will be subsequently directed to mechanical and
chemical recycling [27]

¢ OMV and ALBA Recycling entered an exclusive
agreement in 2022 to build a mixed plastic waste col-
lection and sorting plant (200 000 tonnes/year) in Ger-
many, that is planned to feed a planned large-scale
OMYV pyrolysis plant in Schwechat, Austria [28]

As of 2019 49 % of the plastic waste was landfilled
and 19 % was incinerated. With the historical increase in
plastic waste quantities, the separate collection and
closed-loop approach has been adopted around the world
on different scales in various regions (see Table 1).

The process was accelerated by local regulations, i.e
ban of export of plastic waste to China in 2018 followed
by extension to third world countries in 2019 by Basel
convention [29,30]. Lately the regulation on CO; emis-
sions are further forcing plastic waste recycling for use in
refining/petrochemical industries, in order to reduce the
carbon footprint of the produced fuels and plastics — e.g.
REDII [1]. The carbon footprint of the products may soon
become one of the conditions to retain the license to op-
erate the facilities.

The European Union has set a target of only 10% of
plastic waste to landfill by 2030, compared to around
20% at present. Taxes on incineration are also being in-
creasingly used to limit this form of waste processing
[31]. OECD have reported the status of the policies and
incentives for waste recycling around the world, which
shows that most of the world’s population lives in sys-
tems that lack operational incentives, see Figure 2. Fur-
thermore, European Union comes up as a front-runner in
initiatives on closed-loop waste management. This can be
also documented by national systems for sorted waste
collection summarized in Table 2.

The closed-loop pathways follow the general waste
management hierarchy of reduce-reuse-recycle. Figure 3
shows an example of the plastic material lifecycle. The
technical and economical resource cost increases from
reuse to feedstock recycling and hence sets general prior-
ities in handling the plastic waste.

Therefore, generally, the waste that cannot be techni-
cally or economically recycled via the less demanding path-
ways should be considered for the more demanding ones.
This approach would render end-of-life mixed plastic waste
a candidate fit for feedstock recycling under closed-loop
waste management. This links the waste plastics recycling
back to the (petro)chemical and refining industry. The con-
ceptual link back to the refinery and petrochemical produc-
tion can be in form of a direct co-processing with interme-
diate mechanical cleaning/sorting steps, or chemical pre-
pre-treatment by conversion to liquid/gaseous products that
can be further processed or blended with the conventional
refinery/petrochemical feedstocks.

In 1960s plastics pyrolysis processes started to be
developed and in 1970s — 1980s the first initiatives
started to appear on the industrial scale, namely in Japan
[21] and Germany [32].
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Table 2: Local collection schemes in Europe
(source: [21])

Country Waste Collection system
Europe Pro Europe sprl
Austria ARA Alstoff Recycling Austria AG
Belgium asbl Fost Plus vzw
Bulgaria EcoPack Bulgaria
Cyprus (Lstrg.en Dot Cyprus Public Company
Czech Republic EKO-KOM, a.s.
Finland PYR Ltd
France Aco Emballages SA;Adelphe
Germany Duales System Deutschland
Greece HE.R.R.CO Hellenic Recovery and Re-
cycling Co.

o Valpack Ltd; BIFFPACK; WASTE-
Great Britain Pzgﬁ td; CK; S
Hungary OKO-Pannon p.b.c.
Ireland Repak Ltd.
Italy CONAI (Consorzio Nationale Imballagi)
Latvia Latvijas Zalais Punkts, NPO, Ltd
Lithuania Zaliasis Taskas, UAB
Luxemburg Valorlux asbl
Malta GreenPak Malta
Norway Materialretur A/S; RESIRK
Poland RekoPol-Organizacja Odzysku S.A.
Portugal Sociedade Ponto Verde, S.A.
Slovak Republic Envi-pak, a.s.
Slovenia Slopak d.d.o.
Spain Ecoembalajes Espana, S.A.
Sweden REPA-Reparagistret AB; RE-

TURPACK PET
The Netherlands SVM-PACT
Turkey CEVKO

Since this study is focused on industrial integration
of the pyrolysis processes and refining/petrochemical in-
frastructure, advances in the development of the pyroly-
sis processes themselves are not discussed in detail.
However, as their understanding is an important pre-reg-
uisite to assess the integration scenarios, detailed reviews
by [1,2,18,33-37] are referenced here providing detailed
studies on state of the art, characteristics and challenges
of various plastics pyrolysis methods.

The early commercial technology development is
summarized by Scheirs [21] and Tukker [22] by regions
in detail. Recently, many start-up companies and institu-
tions have attempted to establish, operate and/or sell the
plastics pyrolysis processes, which has created a quickly
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changing environment in the market of pilot, demonstra-
tion and scale-up attempts, as the technologies are not yet
mature. A list of relevant active players, therefore,
changes dynamically. A list of active technologies has
been adapted from [38], and enhanced with recent infor-
mation as of July 2023, see Table 3.

The portfolio of companies has in the meantime
been expanded from standalone start-up companies and
major petrochemical producers, also to established chem-
ical technology licensors (e.g. Haldor-Topsoe, Lummus
Technology, UOP) and EPC companies signalling
stronger opportunities to implement the plastics chemical
recycling at large scale.

Solis [39] evaluated the plastic waste chemical re-
cycling technologies from the perspective of the techno-
logical readiness level (TRL). TRL matrix was developed
based commercial scale of operation, process tempera-
ture, sensitivity to feedstock quality and polymer break-
down depth. TRL ranged from 1 to 9, where 9 is the high-
est. Eight plastics chemical recycling technologies were
distinguished and it was concluded that there are three
technologies with TRL 9: thermal cracking (pyrolysis),
catalytic cracking and conventional gasification. Other
technologies are still under development and are not at
commercial stage yet, namely plasma pyrolysis, micro-
wave-assisted pyrolysis, hydrocracking, plasma gasifica-
tion and pyrolysis with in-line reforming.

The initial chemical recycling plant designs were in-
tended to convert plastic waste into fuels utilized either
by the process itself or for incineration to produce heat or
electricity — waste-to-energy. With increasing scale and
complexity, the next stage of efforts was directed to use
the pyrolysis conversion products to produce transporta-
tion fuels — waste-to-fuels. Recently the conversion prod-
ucts are intended to be more and more directed to petro-
chemical plants in order to produce plastics and petro-
chemical intermediates (BTXSEDb [40]), waste-to-chemi-
cals.

Practical applications towards utilization of plastics
and their pyrolysis products in refinery units were studied
by Palos [18,41], potential synergies were highlighted for
hydroprocessing and FCC applications. Co-feeding of
PE/PP or derived waxes increases reactivity under the
process conditions and improves yields. More recently
detailed reviews towards utilization in modern steam
crackers were published by Kusenberg [42,43] and Thun-
man [44] focusing on importance of detailed plastics py-
rolysis product analysis, in order to properly pre-treat the
streams by reducing aromatic and olefinic content as well
as contaminants, that may be fatal for the cracking heater
radiant coils (by promoting rapid coking and corrosion),
deactivate catalysts, cause corrosion etc.

In order to identify the right configuration of waste-
to-fuels and waste-to-chemicals technologies, compati-
bility of the converted recycled streams with the existing
conventional refining and petrochemical technologies re-
quire to be assessed.
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Figure 2: Policy instruments status to promote plastic waste recycling worldwide (source: [23])
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Figure 3: Closed-loop pathways of handling plastic waste (source: [30])
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3. Plastic Waste Pyrolysis Products and
Their Processing

As was introduced in the section 2, the products of
the plastics pyrolysis require to be characterized, in order
to determine compatibility with the existing refining/pet-
rochemical processes.

For such purposes, four basic characterization cate-
gories can be distinguished.

a) Physico-chemical properties

b) Chemical composition (main hydrocarbon compo-
nents and groups)

c) Chemical composition — heteroatoms

d) Chemical composition — trace contaminants

Physico-chemical properties translate into material
transportation, blending and separation characteristics to
be accommodated by the hydraulic design of the plant.
Moreover, storage and safety characteristics are also in-
cluded in this group.

Main hydrocarbon and group composition provides
information for heat and mass balancing and yield mod-
elling for selection of downstream processing path. Fur-
ther treatment needs of specific hydrocarbon groups (typ-
ically aromatics, olefins) can be also identified based on
this data.

Heteroatom and trace contaminant content mainly
determines a need for further upgrading, in order to avoid
fouling, excessive corrosion of equipment and poisoning
of catalysts in downstream units. Additionally, removal
of contaminants is important to comply with the end-
product specifications.

An example of compositions and properties of
mixed plastic waste pyrolysis gas and oil are summarized
in Table 4 and Table 5 adapted from [21,45]. Parameter
range is driven by plastic waste composition, selected py-
rolysis method and process conditions, which can be
tuned towards a desired product composition. Compre-
hensive summaries of various compositions and experi-
mental conditions are provided by [2,33].

Hydrocarbon group yields in liquid products of var-
ious plastic waste type pyrolysis in fixed bed batch reac-
tor at 700 °C have been summarized by Kusenberg [42],
refer to Figure 4. Similarly, in order to address variability
in the mixed-waste plastic feedstock composition and its
impact on the intermediate product composition, a further
sensitivity study of the composition data is required.

Pyrolysis gas contains high content of light C, — C4
olefins, which are desirable for separation and directing
towards polymer production. Treatment of CO and CO;
is required, in order to achieve C,, Cs polymer grade pu-
rity. The light olefin content is the highest for PE/PP
waste and reduces with aromatic polymer addition such
as PET or PS.

Depending on the pyrolysis temperature, the gas
yields can reach > 70 wt. % [21]. Nonetheless, the author
has observed that most of the attention is given to the lig-
uid products in the research literature in the context of
downstream processing.
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Table 4: An example of mixed plastic waste (PE/PP
57%, PS 19%, PVC 13.7%, Inorganic 5.5 %) pyrolysis gas
composition at reaction temperatures from 680 °C to
790 °C (adapted from [45])

Product Gas

Temperature (°C)

Components
(Wt%) 680 735 790
Hydrogen 0.7 0.7 1.9
Carbon monoxide 8.4 14.2 6.3
Carbon dioxide 20.4 20.8 3.4
Methane 16.7 22.7 46.5
Ethene 18.4 20.7 26.0
Ethane 10.1 7.2 7.8
Propene 13.8 7.8 3.3
Propane 17 0.5 0.2
Butenes 4.6 15 0.4
Buta-1,3-diene 19 16 1.2
Penta-1,3-diene 0.1 0.0 0.0
Pent-1-ene 0.6 0.1 0.0
Cyclopentadiene 0.6 0.5 0.3
Isoprene 0.3 0.2 0.0
Hex-1-ene 0.1 0.0 0.0

Table 5: An example of mixed plastic waste (HD/LDPE
40%, EPC 10%, PP 38%, PS 10%, PA 6.6%, PVC 1%) pyroly-
sis liquid product composition and properties at reaction
temperatures from 500 °C to 550 °C (adapted from [21])

Product Naphtha Diesel ;ﬁzfcpgr”
Aliphatic olefins 574 379 442.453  406-41.9
(Wt%)

Paraffins (wt%)  42.5-44.3  54.7-54.9 58.1-59.4
Aromatics (wt%) 17.8-20.4 0-1 NR
Benzene 0.8-0.9 0-0.1

Toluene 0.3-0.9 0.1

Ethylbenzene 2.1-2.7 0.2-0.3

Styrene 12.2-14.5 0.1-0.3

Xylenes 0.5-0.8 0-0.2

Other 1-15 0.1-0.2

M (g/mol) 118-121  242-248 NR
Density (g/cm®)  0.753-0.759 0.781-0.793 0.818-828
E{Tf;gg’fs”gt wee) MR 4344  NR
CH 6 6.1-6.2 6.1-6.2
Flash point (°C) NR 94-98 216-219
Pour point (°C)  (-49)-(-47)  (-13)-(-9) 61-68

NR - not reported
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Figure 4: Hydrocarbon group distribution in liquid products of pyrolysis of various plastic feedstocks in fixed bed
batch reactor at 700 °C (source [42])

The author puts emphasis on the fact that the high
olefin content in the pyrolysis gas is an attractive source
of C, — C4 olefins, that (unlike the pyrolysis oil) do not
need to be cracked again in the refinery/petrochemical
plant, reducing the associated monomer production cost.
Therefore, a closer analysis on scenarios for pyrolysis gas
valorisation schemes is required, in order to describe the
potential benefits more specifically.

Pyrolysis oil contains Cs. aliphatic hydrocarbons,
olefins and aromatics. The groups are represented based
on source plastic waste composition and pyrolysis condi-
tions [40,46-48]. Pyrolysis oils are thermodynamically

unstable and tend to polymerize and oxidize to form
gums, sediments and agglomerations of asphaltenes [47].

The main advantage of products of plastics pyroly-
sis is generally low or no sulphur content. On the other
hand, high content of other heteroatoms (O, N, CI) and
metals presents a main challenge for refining and petro-
chemical unit compatibility, because these components
are present is much higher concentrations compared to
the conventional refinery/petrochemical unit feedstocks,
as shown in Table 6. Detailed inorganic contaminant re-
view was presented in literature [42,47,49].

Table 6: Comparison of composition and contaminants in Plastic Pyrolysis Oil and in conventional refinery and steam

cracker feedstocks (adapted from [47])

Elements Plastic Pyrolysis

Vacuum Gas Oil (VGO) Light Cycle Oil (LCO) Steam Cracker Feedstock

Oil (PPO) [15] [31] [32] (Naphtha)
Hydrocarbons(wt%)
Paraffins 19.8 8.49 22.3 41.7
Olefins 59.5 - - -
Naphthenes 7.1 29.16 15.9 46.2
Aromatics 13.6 62.34 61.8 12.1
Contaminants (wt%)
0.0046 1.17 0.1771 0.5
Light feedstock: 0.01
N 0.1143 0.23 0.1375 Hegavy feedstock: 0.2
<0.1 NR NR 0.1
Other Contaminants (ppm)
Cl 474 NR NR 3
Si 28 NR NR 1
Na 82 NR NR 0.025

NR - Not reported
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The major source of the inorganic contaminants are
additives included in the formulation of various plastics
grades. The contribution of the contaminants comes from
the original formulation of the plastics as well as from the
cross contamination during their lifecycle and waste han-
dling. Hahladakis [49] reviewed the additives used in
plastics formulation and their faith through the lifetime
of the material. By examining recycled postconsumer
LDPE, HDPE waste over 1000 chemicals were identi-
fied. Further insight into the characteristics and lifecycle
of the additives in the plastic waste will help set more
appropriate analytical schedules and methods for pyroly-
sis product contamination testing. Subsequently, such an-
alytical results of pyrolysis products can be used to ap-
propriately address the contamination in treatment path
design of the pyrolysis products [50].

Fuels production applications of the pyrolysis oils
were extensively studied by [21,32,33,35]. Possibilities
to process the pyrolysis oils by hydroprocessing, FCC
and delayed coking were discussed. Due to the low oxi-
dation stability and high contamination, the pyrolysis oil
require pre-treatment prior to further processing. High
heteroatom and metal content may contribute to quick de-
activation of the FCC and hydroprocessing catalysts. Fur-
thermore, high olefin and aromatic content accelerates
coking in FCC and heat balance between the reactor and
regenerator needs to be revisited before pyrolysis oil is
processed. Several authors have reported that co-pro-
cessing of the pyrolysis oils in the mentioned refinery
units didn’t show any impact up to 5 wt % of pyrolysis
oil in a conventional feedstock [21]. Petrochemical appli-
cation for steam cracking has been recently reviewed by
[42,43,47]. Unlike refinery unit, steam crackers are more
sensitive to trace contaminants and dilution ratios of py-
rolysis oil and conventional feedstock during co-pro-
cessing were reported to theoretically reach 1/12-17 as
minimum.

Kaminsky studied suitable process conditions for
production of aromatic hydrocarbons (BTXSEb) [40].
The pyrolysis solid carbon residue — char — concentrates
most of the inorganic contaminants and heteroatoms
from the feed mixed plastic waste. In case of virgin low-
contaminated polymers, char can be used for production
of e.g. adsorbents, carbon tubes, etc. [47]. In case of
mixed-plastic waste, the char can be used in a cement
blast furnace. Alternatively, the chars can be treated by
organic solvent extraction and acid demineralization to
remove the inorganic metal contaminants and recover
trapped pyrolysis oil. High efficiency in the oil extraction
(up to 81%) and high efficiency of demineralization by
HCI (86%) was reported by Belbessai [47].

4. Chemical Recycling of Plastics — pub-
lished data on economics and LCA
4.1. Business Studies

In order to process and valorise waste plastics pyrol-
ysis products in the refinery and petrochemical units, sev-
eral technical challenges related to their composition and
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contamination need to be addressed, as discussed in Sec-
tion 2. As an extension of the technological scenarios, an
appropriate assessment is required for economics and en-
vironmental aspects, such that investors and industrial
operators are able to select the most sensible and feasible
pathways.

An integrated economic model was published by
McKinsey [51] for mechanical recycling recovery and re-
use of plastic waste that gets otherwise landfilled or in-
cinerated. The study identified over 1000 combinations
of plastic type, application, global geographies and re-
covery/reuse routes. The model identified 20% of cases
with potential return on invested capital > 15% assuming
oil price of 60% per barrel. The model utilized an assump-
tion of a single owner value-chain and didn’t consider
any feedstock recycling yet, since it considered state-of-
play as of 2018. To address both of these assumptions,
technological data about feedstock recycling need to be
made available and specific regional owner structures to
be defined as the market develops.

In another associated study, McKinsey [52] mapped
a global plastics waste generation and developed projec-
tions of recovery rates by 2030 and 2050. As a conclusion
the study showed that mechanical recycling has an ex-
pansion potential by 2030 at oil prices of 75$ per barrel,
whereas below 65$ per barrel the economics becomes
challenging. On the other hand, under a high adoption
scenario, pyrolysis of waste plastics integrated with a
steam cracker was reported as more resilient to oil prices
as low as 50% per barrel.

BCG [53] have conducted a comprehensive analysis
of the global waste markets and business environment of
plastics recycling with aim to assess business cases for
mechanical recycling and viability of plastic waste pyrol-
ysis. Despite regional differences, the overall reported
conclusion was that plastic waste pyrolysis is viable glob-
ally. Nonetheless, economic feasibility is some regions
relies on regulations to make landfilling less financially
attractive.

4.2. Life-cycle assessment studies

The plastic waste feedstock recycling is often posi-
tioned as replacement for landfilling and incineration,
and complementary method to mechanical recycling. The
role of life cycle assessment (LCA) in this domain is to
account the environmental impacts of the chemical recy-
cling scenarios, and verify the benefits compared to land-
filling and/or incineration waste management methods
[54].

Costa [55] has performed a critical review of 18
LCA studies on the subject of the plastics chemical recy-
cling. It was highlighted, that despite having commercial
units in operation (refer also to Table 1), most scientific
studies are conducted based on laboratory scale reactors
with simplified models excluding detailed engineering
parameters of the technology (heat/mass transfer limita-
tions, feed contamination treatment, auxiliary material
streams, etc.). Furthermore, the modelling results in most
of the reviewed studies compare plastic waste chemical



PALIVA 15 (2023), 4, pp. 136-154 Waste Plastics Chemical Recycling in the Context of Refining and Petrochemical Industries

recycling only to landfilling and incineration. It is sug-
gested, that mechanical recycling and alternative scenar-
ios of chemical recycling are included in the comparison
to provide granular and relevant comparison. The aim of
the observations is to (rightfully) avoid biased conclu-
sions in either direction.

With reference to Figure 2, EU is identified as a re-
gion with highly developed incentives and waste collec-
tion infrastructure. Despite LCA studies for other global
regions are also published [56,57], the author focuses be-
low on specific selected studies published for EU region.

Oasmaa [58] presented a study based on a bench-
scale testing of plastic waste pyrolysis. The conclusions
confirmed positive environmental impact compared to
business-as-usual in Finland. Further benefits could be
obtained by coupling the pyrolysis with mechanical recy-
cling of plastic waste, where only the reject for plastics
waste recycling would be sent for pyrolysis. Business
feasibility, however, wasn’t presented in the study.

Volk [59] studied recycling of lightweight packag-
ing in Germany. Mechanical recycling, chemical recy-
cling (pyrolysis) and their combinations were assessed.
Products of the pyrolysis were considered for steam
cracking to produce virgin plastics. Pre-treatment of py-
rolysis products was considered, but details of the steam
cracking plant integration were not discussed. The com-
bined mechanical-chemical recycling scenario was con-
firmed to have the highest saving in global warming po-
tential (GWP) indicator.

Somoza-Tornos [60] conducted an LCA study based
on process simulation of a theoretical waste PE pyrolysis
process. The results were compared to business-as-usual
scenario of naphtha steam cracking. Despite showing
lower production cost and environmental impact of the
ethylene produced from PE compared to naphtha crack-
ing, it was acknowledged that PE feed and product treat-
ment as well as more detailed pyrolysis modelling are re-
quired.

Ambrieres [31] has reviewed the global status of
plastics recycling and confirmed that at the state-of-the-
art plastics recycling is always the most environmentally
friendly. However, in case waste incinerators become
more efficient in energy recovery, in the short-term hori-
zon, incineration may be environmentally the most suit-
able option in regions with coal-based energy mix (e.g.
China and parts of Europe) based on GHG analysis pre-
sented in the study.

Gutierrez [29] under European Commission Joint
Research Center published an environmental and eco-
nomic assessment for plastic waste recycling. Mechani-
cal, chemical recycling and incineration were compared
based on feedback received through a survey among Eu-
ropean industrial stakeholders. In the conclusions it was
highlighted that economic feasibility of the recycling
generally depends on oil price, that translates into virgin
polymer price. Mixed polyolefin waste pyrolysis was
identified as not viable without further public support. A
hypothetical viability scenario is identified when sum of
CAPEX and OPEX is below 350 EUR/t and feedstock
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prices are at ca 100 EUR/t. Future scale-up, higher adop-
tion and technology maturity are expected to improve the
economic viability of the technology.

5. Conclusions

Thermochemical recycling of plastic waste has been
reviewed from the historical perspective as technology
under development since 1970s aiming to convert mixed
post-consumer plastic waste back to virgin polymers. The
conversion can be achieved either by direct co-pro-
cessing of the mechanically pre-treated plastic waste with
conventional refinery/petrochemical feedstocks, or by
thermally pre-processing the plastic waste into gas/oil
and solid residue.

Pyrolysis gas is attractive for high C, — C, olefins
content, which can be sent to a refinery or steam cracker
separation section to recover the monomers without a
need for additional cracking. Pyrolysis oils are suitable
for a number of applications. Depending on their ratio of
aliphatic/aromatic/olefinic compounds, aromatic compo-
nents (BTXSED) can be separated. Alternatively, frac-
tions with high aliphatic content may be routed towards
FCC or steam cracking. Treatment of olefinic and aro-
matic content, and removal of contaminants is the first
step to be designed with respect to process and mechani-
cal demands of the downstream refinery or petrochemical
plant. With advances in analytical technology, pyrolysis
products can be comprehensively characterized. This is
pointed out as a key factor to correctly identify appropri-
ate steps in the processing pathway.

A number of sites at various scales are operational
mostly in EU, USA, Japan and China with a momentum
for further development driven by circular economy and
GHG regulation. In order to facilitate logistics across the
plastics value chains, several new joint ventures and part-
nerships between waste management companies and tra-
ditional refinery/petrochemical operators have emerged.
With exception of EU, other regions many times don’t
have plastic waste collection and sorting systems at scale.
Therefore, setting-up the collection and sorting logistics
presents an additional step for implementation of the
plastics pyrolysis in such regions. This demonstrates, that
waste management and petrochemical/refining busi-
nesses need to closely integrate, in order to support eco-
nomic feasibility of waste plastics chemical recycling.

Reviewed business and life cycle assessment studies
suggest, that despite showing potential for GHG saving,
waste plastic pyrolysis processes are not yet economi-
cally self-sustainable, and require external funding e.g. in
form of public support, gating fees, or extended producer
responsibility schemes (EPR). It has been found from the
literature review, that further improvements of the eco-
nomic feasibility may be expected with increased scale
of the operations. Moreover, local energy mix, oil price
and landfilling cost are important sensitivity factors.

Currently, the recycled quantities of plastic waste
account for < 0.8 % of the global oil demand. Therefore,
thermochemical recycling of plastic waste still contrib-
utes more towards waste management rather than as
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major feedstock resource. Due to the low produced vol-
umes, the pyrolysis products are mostly aimed to be co-
processed with conventional feedstocks in existing refin-
eries/petrochemical plants. However, a gap still exists in
form of landfilled volumes, that present an opportunity
of growth for the chemical recycling together with glob-
ally increasing plastics demand and corresponding waste
generation. It has been noticed, that researchers mostly
use only simple technological flow schemes for the eco-
nomic studies without considering more detailed energy
and material integration of the plastic pyrolysis stream.
Therefore, the author of this paper identifies an oppor-
tunity for further research in developing a more detailed
processing model under a number of defined scenarios.
Subsequent heat and mass balance with a detailed model
would then yield economic assessment and GHG evalu-
ation results as more realistic. Performing a regionally
specific techno-economic analysis of plastic waste ther-
mochemical recycling will enable to define solutions re-
flecting specific market conditions, energy mix, oil price
and waste collection schemes.

Nomenclature

ABS Acrylonitrile-butadiene-styrene
ASR Automotive shredder residue
BTXSEb  Benzene, toluene, xylenes, styrene,

ethylbenzene

CAPEX Capital expenses

EPC Ethylene-propylene copolymer, in Table 4

EPC Engineering, procurement, construction, in
Section 2

EPR Extended producer's responsibility

FCC Fluid catalytic cracking

FCC FCC Environmental Services, in Section 2

GHG Greenhouse gases

GWP Global warming potential

HDPE High density polyethylene

HVGO Hydrogenated vacuum gasoil

LCA Life cycle assessment

LCO Light cycle oil

LDPE Low density polyethylene

NGL Natural gas liquids

OPEX Operating expenses

PA Polyacrylate

PE Polyethylene

PET Polyethylene terephthalate

PMMA Polymethyl methacrylate

PPO Plastic pyrolysis oil

PS Polystyrene

PVC Polyvinylchloride

VGO Vacuum gasoil

WEEE Waste from electrical and electronic equip-
ment
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