MATEMATICKÉ MODELOVANIE ADSORPČNÉHO SUŠENIA ZEMNÉHO PLYNU

Martin Šoltýs^a, Jozef Markoš^b

^aeustream, a.s. Votrubova 11/A, 821 09 Bratislava, ^bÚstav chemického a environmentálneho inžinierstva, Fakulta chemickej a potravinárskej technológie, Slovenská technická univerzita, Radlinského 9, 812 37 Bratislava, e-mail: martin.soltys@eustream.sk

Tento článok sa zaoberá modelovaním sušenia zemného plynu od vody a vyšších uhľovodíkov použitím adsorpčného procesu. Poskytuje matematický model na simuláciu sušenia zemného plynu na skutočnej jednotke, ktorý je schopný predpovedať čas do nasýtenia náplne a čas na jej regeneráciu. Výpočtovej časti predchádza uvedenie teoretického základu potrebného k pochopeniu procesu.

Kľúčové slová: zemný plyn, sušenie, adsorpcia, silikagél, pseudohomogénny model

Došlo 20. 1. 2013, přijato 26. 2. 2013

1. Úvod

V plynárenskom a ťažobnom priemysle niekedy dochádza k potrebám úpravy zloženia zemného plynu, aby boli splnené stanovené požiadavky jeho kvality. V prípade ťažby z podzemného zásobníka sa zemný plyn pri kontakte s ložiskovou vodou nasvcuje vodnou parou. V prípade bývalých ropno-plynových ložísk môže byť tento plyn obohatený aj o vyššie uhľovodíky. Prítomnosť týchto látok v plynovodoch môže spôsobiť prevádzkové problémy alebo až poškodenie zariadení. Zemný plyn sa preto týchto zložiek pri ťažbe zbavuje a z procesu vystupujú okrem vyčisteného zemného plynu aj vyššie uhľovodíky ako kvapalný gazolín a vodná para ako kvapalná ložisková voda. Jednou z možností ako zbaviť zemný plyn vody a vyšších uhľovodíkov je adsorpčný proces. V súčasnosti sú k dispozícii sušiace jednotky, ktoré použitím adsorpčného procesu s vhodne zvolenou náplňou dokážu súbežne separovať zo zemného plynu vodu i vyššie uhľovodíky. Takáto jednotka je inštalovaná i v Centrálnom areáli Gajary spoločnosti NAFTA, a.s., ktorú tvoria adsorpčné kolóny (obr. 1).

Obr. 1 Detail na sústavu sušiacich kolón v Centrálnom areáli Gajary. Foto: Miloslav Červený

V tejto technológii adsorpčného sušenia zemného plynu sú použité ako adsorbenty silikagély s komerčným názvom Sorbead spoločnosti BASF. Schopnosť adsorbenta Sorbead typu H, ktorý tvorí hlavnú časť náplne kolóny, je adsorbovať okrem vodných pár i vyššie uhľovodíky. Adsorpčným sušením s takouto technológiou sa teda významne upravuje nielen rosný bod vody, ale aj rosný bod uhľovodíkov. Asi 20 % náplne tvorí adsorbent Sorbead WS, ktorý je uložený nad adsorbentom Sorbead H. Sorbead WS je jediný vysokokapacitný silikagélový adsorbent, ktorý je vodeodolný. Slúži ako ochrana Sorbeadu H proti kondenzovanej vode a predlžuje jeho životnosť. Náplň adsorbentu je chránená zhora i zdola uložením vrstiev keramických guličiek.

2. Adsorpcia

Množstvo naadsorbovanej látky je v rovnováhe závislé od veľkosti povrchu adsorbentu, od parciálneho tlaku adsorbujúcej sa zložky a od teploty. Naadsorbované množstvo q sa vyjadruje ako látkové množstvo alebo ako hmotnosť či objem na jednotku hmotnosti adsorbenta (mol.g⁻¹, g.g⁻¹, m³.g⁻¹). Najčastejšie sa experimentálne stanovujú adsorpčné izotermy, ktoré vyjadrujú závislosť rovnovážneho naadsorbovaného množstva od tlaku plynu pri konštantnej teplote.

V chemicko-inžinierskej praxi sa ešte stále často pre svoju jednoduchosť používa Langmuirova izoterma, ktorá bola odvodená teoreticky za predpokladu, že dochádza len k jednovrstvovej adsorpcii, ktorej pravdepodobnosť je rovnaká na všetkých miestach povrchu, pričom sa jednotlivé molekuly navzájom neovplyvňujú. Táto izoterma má tvar

$$q = k \frac{Kp}{1+Kp} , \qquad (1)$$

kde k je maximálne možné naadsorbované množstvo plynu, K je konštanta, ktorá je len funkciou teploty a má tiež určitý fyzikálny význam, a p je tlak. Konštanta k je vo vzťahu so špecifickým povrchom adsorbenta a teoreticky by nemala závisieť od teploty, pričom K sa s teplotou mení. Pri korelácii experimentálnych dát môžeme túto závislosť vyjadriť Arrheniovou rovnicou

$$K = K_{\infty} e^{Q/RT} \,, \tag{2}$$

kde K_{∞} je predexponenciálny faktor a Q energetický faktor. Za predpokladu, že jediný efekt interakcie zložiek v plynnej zmesi je redukcia voľného povrchu na adsorpciu jednej zložky zabratím tohto povrchu inými zložkami, možno teoreticky odvodiť Langmuirovu izotermu pre zložku v plynnej zmesi

$$q_i = k_i \frac{\kappa_i p_i}{1 + \sum_j^N \kappa_j p_j} , \qquad (3)$$

kde k_i a K_i sú konštanty pre zložku *i* a v sume v menovateli zlomku sa sčítava cez všetky zložky v zmesi. p_i je parciálny tlak zložky *i*. Je obvyklé, že pre konštanty k_i a K_i zložiek zmesi sa použijú hodnoty konštánt izotermy pre čisté zložky. Je termodynamicky možné ukázať, že adsorpcia je vždy exotermický dej, pri ktorom sa teplo uvoľňuje. Z toho vyplýva, že naadsorbované množstvo pri konštantnom tlaku so zvyšujúcou sa teplotou klesá. Preto je možné adsorbent regenerovať zvýšením teploty.

3. Matematický model adsorpčného sušenia

Simuláciu adsorpčných procesov sťažuje fakt, že nejde o ustálený, ale o dynamický proces. V priebehu času sa prevádzkové parametre pozdĺž kolóny menia. Zemný plyn obohatený o vyššie uhľovodíky je zmes s veľkým množstvom zložiek. Keby sme modelovali sorpciu všetkých analyticky stanoviteľných látok v takejto zmesi oddelene (prakticky by mohlo ísť aj o 40 stanoviteľných zložiek, teoreticky sa zvykne v zemnom plyne uvádzať prítomnosť až 100 zložiek), nielenže by tento postup viedol k úmerne väčšiemu počtu rovníc, ale potrebovali by sme veľké množstvo údajov v podobe fyzikálnych a chemických vlastností a parametrov (parametre adsorpčných izoteriem, koeficienty prestupu látky ap.), ktoré nie sú známe a ich experimentálne vyhodnotenie je nákladné na čas. Preto je vhodné rozdeliť zložky do tried, tzv. pseudozložiek, ktorým pridelíme určité vlastnosti a parametre vystihujúce všetky zložky v triede. Takýmito pseudozložkami môžu byť napríklad zmesi podľa počtu uhlíkov v molekule. Inou možnosťou je zvoliť skutočnú zložku, ktorá bude reprezentovať skupinu zložiek. V tejto práci pri modelovaní adsorpčnej kolóny sme zvolili takýto postup a uvažujeme tri takéto zložky: metán, n-hexán a vodu. Metán reprezentuje ľahké uhľovodíky, ktoré sa adsorbujú málo alebo vôbec nie, n-hexán reprezentuje ťažké uhľovodíky, ktorých sa zemný plyn pri sušení na inštalovanej sušiacej jednotke zbavuje. Výber týchto zložiek bol ovplyvnený dostupnosťou dát. Metán budeme uvažovať ako neadsorbujúcu sa zložku a sledovať budeme len koncentračné zmeny n-hexánu a vody pri procese sušenia. Budeme používať nasledovné označenie zložiek: n-hexán indexom "H" a vodu indexom "V". Prítomnosť ochrannej vrstvy náplne Sorbead WS nebudeme uvažovať; predpokladáme teda, že vrstvu tvorí len náplň Sorbead H.

K odvodeniu modelu adsorpčnej kolóny na sušeniu zemného plynu so sypanou vrstvou adsorbenta zaveď me nasledujúce **predpoklady**:

- piestový tok tekutiny o konštantnej mimovrstvovej rýchlosti *u*,
- zanedbanie odporu vonkajšieho a vnútorného prestupu látky a kinetiky adsorpcie,
- izobarické podmienky,
- nulové adsorpčné teplá adsorbujúcich sa zložiek, zanedbanie odporu prestupu tepla z plynnej do tuhej fázy a adiabatický proces.

Prvý predpoklad umožňuje zanedbanie axiálnej a radiálnej disperzie. Druhý predpoklad umožňuje zanedbanie niektorých transportných javov a vyplýva z neho, že koncentrácia zložky i v hlavnom toku plynu, koncentrácia zložky i na povrchu častice adsorbenta a koncentrácia zložky i v celom priereze tejto častice sú zhodné. Tretí z predpokladov umožňuje zanedbať tlakovú stratu sypanej vrstvy a stratu celkového tlaku v dôsledku samotnej adsorpcie. Posledné z predpokladov sa týkajú zjednodušenia entalpickej bilancie. Zanedbanie odporu prestupu tepla zabezpečuje, že v danom mieste a čase sa teplota tuhej fázy sa rovná teplote plynnej fázy.

Priestor kolóny obsahujúci sušiacu výplň má tvar valca s konštantným kruhovým prierezom o ploche *S* pozdĺž osi a výškou *L*. Zvoľme objemový element výšky *dz* o objeme dV = S dz podľa obr. 2, ktorým preteká plyn. Hmotnosť tohto objemového elementu je $dm = \rho_b S dz$, kde ρ_b je sypná hustota náplne. Pre **látkovú bilanciu** zložky *i* v tomto elemente platí

$$(\dot{n}_i)_z - \rho_{\rm b} S \, dz \frac{\partial q_i}{\partial t} = (\dot{n}_i)_{z+dz} + \varepsilon_{\rm b} \frac{\partial n_i}{\partial t} , \qquad (4)$$

kde $(\dot{n}_i)_z$ je tok látkového množstva zložky *i* cez prierez v mieste *z*, *q_i* je naadsorbované množstvo zložky *i* na jednotku hmotnosti adsorbenta, *t* je čas a ε_b je medzerovitosť náplne. Prvý člen na ľavej strane rovnice predstavuje vstup zložky *i* do objemového elementu a druhý člen úbytok množstva zložky *i* v plyne naadsorbovaním v objemovom elemente na tuhú fázu. Prvý člen na pravej strane rovnice predstavuje výstup zložky *i* z objemového elementu a druhý člen časovú akumuláciu zložky *i* v plynnej fáze. Keďže v adsorpčných izotermách vystupujú parciálne tlaky zložiek, je vhodné vyjadriť tok látkového množstva zložky *i* pomocou stavovej rovnice

$$\dot{n}_i = y_i \dot{n} = y_i \frac{p\dot{v}}{ZRT} = \frac{p_i \dot{v}}{ZRT} , \qquad (5)$$

kde *T* je teplota plynu, \dot{V} je objemový prietok plynu a *Z* je kompresibilitný faktor zmesi zemného plynu. Pripomeňme, že $\dot{V} = Su$. Predpokladajme, že kompresibilitný faktor *Z* nie je funkciou *z* a *t*. (V skutočnosti predpoklad izobarických podmienok nestačí k nezávislosti kompresibilitného faktora od *z* a *t*, pretože je závislý aj od teploty a zloženia plynu, ktoré sa, samozrejme, pozdĺž kolóny a v čase menia.) Vynásobením rovnice (4) členom $1/_{Sdz}$ pre $dz \rightarrow 0$ dostaneme použitím (5)

$$\frac{\varepsilon_{\rm b}}{ZR} \frac{\partial \left(\frac{p_i}{T}\right)}{\partial t} = -\frac{u}{ZRT} \frac{\partial \left(\frac{p_i}{T}\right)}{\partial z} - \rho_{\rm b} \frac{\partial q_i}{\partial t} \ . \tag{6}$$

Časovú závislosť naadsorbovaného množstva tak môžeme vyjadriť pomocou časových a priestorových závislostí parciálnych tlakov adsorbujúcich sa zložiek a teploty.

Podobným postupom možno zostaviť entalpickú bilanciu objemového elementu, kde však vzhľadom k predpokladu zanedbania adsorpčných tepiel zložiek bude chýbať člen vyjadrujúci zmenu entalpie naadsorbovaním sa zložiek. Potom má **entalpická bilancia** tvar

$$\left[\varepsilon_{\rm b}c_{pg}\rho_{\rm g} + (1-\varepsilon_{\rm b})c_{ps}\rho_{\rm s}\right]\frac{\partial T}{\partial t} = -uc_{pg}\rho_{\rm g}\frac{\partial T}{\partial z}.$$
 (7)

kde c_{pg} je merná tepelná kapacita plynu, ρ_g je hustota plynu, c_{ps} je špecifická tepelná kapacita tuhej fázy a ρ_s je hustota tuhej fázy tvorenej adsorbentom. Tieto štyri veličiny nebudeme považovať za funkcie funkciou z a t a budeme ich teda považovať za konštanty. Na vyjadrenie derivácií $\frac{\partial q_i}{\partial p_j}$ a $\frac{\partial q_i}{\partial T}$ zvoľme pre adsorpčnej rovnováhy izotermu v Langmuirovom tvare.

Počiatočné a okrajové podmienky majú tvar:

$$p_{\rm H}(z,0) = 0, \ p_{\rm V}(z,0) = 0, T(z,0) = T_{\rm poč},$$

$$p_{\rm H}(0,t) = p_{\rm H}^{\rm f}, \ p_{\rm V}(0,t) = p_{\rm V}^{\rm f}, T(0,t) = T_{\rm ads}, \ (8)$$

kde $p_{\rm H}^{\rm f}$, $p_{\rm V}^{\rm f}$ sú konštanty vyjadrujúce zloženie vstupujúceho plynu v parciálnych tlakoch, Tads je teplota vstupujúceho plynu pri adsorpcii. T_{poč} je teplota v kolóne pred začatím adsorpcie, ktorá môže byť všeobecne iná než T_{ads}. Tvar počiatočných podmienok vyplýva z toho, že pred začiatkom sušenia (t = 0) sa v náplni pozdĺž celej kolóny nenachádzajú žiadne adsorbujúce sa zložky, teda ich parciálne tlaky sú nulové. Tvar okrajových podmienok vyplýva z toho, že zloženie vstupujúceho plynu sa počas sušenia nemení a parciálne tlaky adsorbujúcich sa zložiek na vstupe (z = 0) sú konštantné. Tento model predstavuje pseudohomogénny jednorozmerný model adiabatického adsorbéra s pevným lôžkom s piestovým tokom so zanedbaním tlakovej straty a adsorpčných tepiel zložiek, ktorého náplň sa regeneruje zvýšením teploty. Matematicky tento model predstavuje sústavu dvoch kvázilineárnych parciálnych diferenciálnych rovníc a jednej lineárnej parciálnej diferenciálnej rovnice prvého rádu závislých premenných $p_{\rm H}(z,t), p_{\rm V}(z,t), T(z,t)$ so zadanými počiatočnými podmienkami v t = 0 a okrajovými podmienkami v z = 0. Sústavu riešime numericky a na riešenie použijeme metódu konečných diferencií. Časové a priestorové derivácie závislých premenných v sústave nahradíme spätnými diferenčnými formulami

$$\frac{\partial p_{i}}{\partial z} \approx \frac{(p_{i})_{m}^{n} - (p_{i})_{m-1}^{n}}{\Delta z} \qquad \frac{\partial p_{i}}{\partial t} \approx \frac{(p_{i})_{m}^{n} - (p_{i})_{m}^{n-1}}{\Delta t},$$
$$\frac{\partial T}{\partial z} \approx \frac{(T)_{m}^{n} - (T)_{m-1}^{n}}{\Delta z} \qquad \frac{\partial T}{\partial t} \approx \frac{(T)_{m}^{n} - (T)_{m}^{n-1}}{\Delta t},$$
(9)

kde Δz , resp. Δt je dĺžka diskretizačného kroku v priestorovej, resp. časovej súradnici. Dolný index (m), resp. horný index (n) označuje bod na priestorovej, resp. časovej súradnici. Počet diskretizačných bodov v časovej súradnici je N_z = $\frac{L}{\Delta z}$.

V každom časovom kroku potom numericky riešime 3 x Nz nelineárnych algebrických rovníc o neznámych $(p_{\rm H})_{\rm m}^{\rm n}, (p_{\rm V})_{\rm m}^{\rm n}, (T)_{\rm m}^{\rm n}, {\rm m} = 1, 2, ..., {\rm N}_{\rm z}, {\rm kde}$ profil prvým odhadom priestorový je z predchádzajúceho časového kroku. Výpočet adsorpčného procesu sa skončí, keď koncentrácia n-hexánu alebo vody v plyne na výstupe prekročí určitú kritickú hodnotu, ktorá vyplýva z nárokov na spracovaný zemný plyn. Táto hodnota súvisí s požadovaným rosným bodom uhľovodíkov a vody na výstupe. V tomto momente sa začne výpočet desorpčného procesu: zmení sa smer toku plynu a teplota vstupujúceho plynu. Zloženie vstupujúceho plynu, tentoraz vstupujúceho už zo spodku kolóny (viď obr. 2), sa nemení, čo vyplýva z technológie sušenia inštalovanej v Centrálnom areáli Gajari, opísanej v kapitole 1. Zmena smeru toku plynu má v látkovej a entalpickej bilancie vplyv na znamienko konvektívnych členov $\frac{u}{ZR} \frac{\partial \left(\frac{P_i}{T}\right)}{\partial z}$ a $uc_{pg}\rho_g \frac{\partial T}{\partial z}$. Pri prepnutí režimov môže dôjsť aj k zmene absolútnej hodnoty prietoku plynu a zmení sa teda aj absolútna hodnota mimovrstvovej rýchlosti u (v našom prípade sa výrazne zníži). Okrem zmeny znamienka konvektívnych členov sa zmení aj okrajová podmienka v (5 – 9) na

$$p_{\rm H}(L,t) = p_{\rm H}^{\rm f}, \ p_{\rm V}(L,t) = p_{\rm V}^{\rm f}, T(L,t) = T_{\rm des}, \ (10)$$

keďže sa zmenila súradnica v ktorej je táto okrajová podmienka zadaná – zloženie plynu je už konštantné na spodku kolóny (z = L), namiesto na vrchu kolóny (z = 0). T_{des} je teplota, na ktorú je zahriaty regeneračný plyn pred vstupom do kolóny. Počiatočná podmienka vyplýva z profilu z posledného časového kroku v adsorpčnom procese. Vzhľadom na zmenu okrajovej podmienky sa vo výpočte pri desorpčnom procese zmenia diferenčné formuly pre priestorové derivácie vzhľadom na priestorovú súradnicu zo spätných na dopredné

$$\frac{\partial p_i}{\partial z} \approx \frac{(p_i)_{m+1}^n - (p_i)_m^n}{\Delta z} \qquad \frac{\partial T}{\partial z} \approx \frac{(T)_{m+1}^n - (T)_m^n}{\Delta z}.$$
 (11)

Desorpčný proces prebieha, kým sa adsorbent nezregeneruje po celej dĺžke kolóny. V našom prípade to znamená, že po celej dĺžke musí hodnota naadsorbovaného množstva adsorbujúcich sa zložiek zodpovedať rovnovážnej hodnote pri teplote a zložení vstupujúceho regeneračného plynu. To, či je adsorbent zregenerovaný po celej dĺžke, možno sledovať na grafe závislosti naadsorbovaného množstva od času a priestorovej súradnice. Prípadne stačí sledovať hodnotu naadsorbovaného množstva na vrchu kolóny (z = 0), keďže zrejme na tomto mieste dôjde k regenerácii až na konci desorpčného cyklu. Keď teda veličiny $q_{\rm H}(0,t), q_{\rm V}(0,t)$ dosiahnu hodnoty zodpovedajúce rovnovážnym hodnotám pri teplote a zložení vstupujúceho regeneračného plynu, výpočet desorpčného cyklu sa ukončí. V skutočnosti je na úplnú regeneráciu kolóny ešte potrebný čas na ochladenie veže na teplotu pri adsorpcii; výpočet tohto času však už nie je súčasťou nášho modelu. Stavové správanie plynnej zmesi sme popisovali viriálnym rozvojom s tlakovými viriálnymi koeficientami [1], ktorého použitie má výhodu v tom, že sa dá z neho explicitne vyjadriť mólový objem (pripadne celkové látkove množstvo zmesi). Viriálne koeficienty zložiek boli prevzaté z [2]. Na odhad vlastností adsorbenta sme použili údaje z literatúry regresiou experimentálnych dát, prípadne sme ich odhadli. Tab. 1 zhŕňa vlastnosti adsorbenta použité pre prezentovaný model. Matematický model sme riešili vo výpočtovom prostredí Maple 14 spoločnosti Maplesoft.

4. Výsledky

Matematický model prezentovaný v predchádzajúcej podkapitole by mohol primárne slú-

žiť na predikciu času potrebného na adsorpčný a desorpčný proces pri sušení zemného plynu. Pri testovaní modelu sme za vstupné premenné (prevádzkové podmienky, parametre zariadenia) zadávali hodnoty zhodné alebo porovnateľné so skutočnými, používanými na sušiacej jednotke v Centrálnom areáli Gajary. Pri dĺžkach diskretizačných intervalov menších než $\Delta z = 0.2$ m a $\Delta t = 0.01$ hod sa výsledné hodnoty časov adsorpčného a desorpčného cyklu už menili v miere zanedbateľnej pre prax a výpočet trval neprakticky dlho.

Tab. 1	Vlastnosti adsorbenta (* - vlastnosti be	oli
	odhadnuté)	

konštanty adsorp	referencia			
$K_{\rm H}$ [mol.kg ⁻¹]	5,7			
$K_{\infty \mathrm{H}}$ [-]	3.10-9	[3]		
$Q_{ m H}$ [J.mol ⁻¹]	26796			
$K_{\rm V}$ [mol.kg ⁻¹]	203			
$K_{\infty \mathrm{V}}$ [-]	1.10^{-12}	[4]		
$Q_{ m V}~[m J.mol^{-1}]$	42742			
štruktúrne vlastnosti adsorbenta				
$ ho_{ m b}$ [kg.m ⁻³]	700	[5]		
ε _b [-]	0,36			
$\rho_{\rm s}$ [kg.m ⁻³]	1800	*		
c_{ps} [J.kg ⁻¹ .K ⁻¹]	900			

Ukážme najprv, ako tento model predpovedá prienikové krivky, vyjadrujúce časovú závislosť koncentrácie zložky na výstupe z kolóny, v režime adsorpcie až do stavu úplného nasýtenia adsorbenta. Na obr. 3 sú znázornené prienikové krivky pre obidve separované zložky s totožnou vstupnou koncentráciou.

Obr. 3 Časová závislosť mólových zlomkov separovaných zložiek na výstupe plynu z kolóny v režime adsorpcie (prienikové krivky) pri tlaku 3,5 MPa, prietoku plynu 2 mil. m³(15 °C, 101,325 kPa)/deň, teplote vstupujúceho plynu 20°C a vstupných koncentráciách separovaných zložiek v plyne $y_{\rm H}^{\rm f} = y_{\rm V}^{\rm f} = 0,001$

Z obrázku je vidieť, že kapacita adsorbenta pre n-hexán sa naplní omnoho skôr než kapacita vody, čo vyplýva z tvaru izoteriem pre tieto zložky na danom adsorbente. Dá sa preto očakávať, že pri porovnateľnom obsahu vyšších uhľovodíkov a vody vo vstupujúcom plyne bude dĺžku adsorpčného cyklu udávať nasýtenie adsorbenta vyššími uhľovodíkmi. Po nasýtení adsorbenta n-hexánom je jeho výstupná koncentrácia určitý čas vyššia než vstupná a postupne sa znižuje, čo je spôsobené postupným vytesňovaním naadsorbovaných molekúl n-hexánu molekulami vody. V praxi sa adsorpčný cyklus ukončí po dosiahnutí určitej hodnoty výstupnej koncentrácie vyšších uhľovodíkov alebo vody, takže nedôjde k úplnému nasýteniu adsorbenta žiadnou z týchto zložiek. Znázorňuje to obr. 4, resp. obr. 5, na ktorom je znázornené časový priebeh zloženia plynu na vrchu, resp. spodku kolóny. Ako kritérium pre zmenu režimu z adsorpcie na desorpciu sme v tomto prípade zvolili, že výstupná koncentrácia n-hexánu alebo vody (v mólových zlomkoch) presiahne polovicu vstupnej koncentrácie. Na obr. 4 je vidieť, ako asi po dvoch hodinách začne stúpať výstupná koncentrácia n-hexánu na spodku kolóny.

Obr. 4 Časová závislosť mólových zlomkov separovaných zložiek na spodku sušiacej kolóny (*z*=L) pri tlaku 7 MPa, prietoku plynu pri adsorpcii 1 mil. m³(15°C, 101,325 kPa)/deň, prietoku plynu pri desorpcii 16 tis. m³(15°C, 101,325 kPa)/hod, teplote vstupujúceho plynu pri adsorpcii 20°C, teplote vstupujúceho plynu pri desorpcii 297°C a vstupných koncentráciách separovaných zložiek $y_{\rm H}^{\rm f} = 0,01, y_{\rm V}^{\rm f} = 0,0004$. Prepnutie režimu z adsorpcie na desorpciu sa uskutočnilo v čase 2,69 hod.

Obr. 5 Časová závislosť mólových zlomkov separovaných zložiek na vrchu sušiacej kolóny (*z*=0) pri tlaku 7 MPa, prietoku plynu pri adsorpcii 1 mil. m³(15°C, 101,325 kPa)/deň, prietoku plynu pri desorpcii 16 tis. m³(15°C, 101,325 kPa)/hod, teplote vstupujúceho plynu pri adsorpcii 20°C, teplote vstupujúceho plynu pri desorpcii 297°C a vstupných koncentráciách separovaných zložiek $y_{\rm H}^{\rm f} = 0,01, y_{\rm V}^{\rm f} = 0,0004$. Prepnutie režimu z adsorpcie na desorpciu sa uskutočnilo v čase 2,69 hod

V momente naplnenia uvedeného kritéria je v čase približne 2,5 hod režim prepnutý na desorpciu. Na mieste, kde v adsorpčnom režime vychádzal z kolóny vyčistený plyn, v desorpčnom režime vstupuje zahriaty regeneračný plyn s rovnakou vstupnou koncentráciou ako pri adsorpcii, takže zloženie sa na spodku kolóny v tomto režime nemení. Obr. 5 znázorňuje časový priebeh zloženia na vrchu kolóny. V adsorpčnom režime je na tomto mieste zloženie konštantné, keď že tu vstupuje surový plyn s nemenným zložením. V režime desorpcie by sme očakávali, že na výstupe plynu na vrchu kolóny vzrastie koncentrácia obidvoch separovaných zložiek, ktorých adsorbovaný podiel sa z adsorbenta desorbuje a vystupuje z kolóny v plynnej fáze. Prípad na obr. 5 to potvrdzuje. Mólový zlomok vody vo vystupujúcej plynnej zmesi na vrchu kolóny v určitom čase prekročí mólový zlomok n-hexánu. To zrejme vyplýva z toho, že adsorbent je v okamihu prepnutia režimu nasýtený alebo čiastočne nasýtený vodou len na vrchu kolóny, takže tento naadsorbovaný podiel sa desorbuje neskôr, keďže teplota sa zvyšuje postupne v smere prúdenia regeneračného plynu, teda zdola kolóny nahor. (Treba si uvedomiť, že pri desorpčnom režime prúdi plyn zdola hore, čo v zmysle uvedených obrázkov znamená sprava doľava.) To potvrdzuje obr. 6, na ktorom je posledný profil naadsorbovaného množstva zložiek z riešenia sústavy v adsorpčnom režime, a obr. 7, na ktorom je teplotný profil v kolóne v polovici desorpčného režimu.

Po desorpcii separovaných zložiek z celého profilu adsorbenta sa koncentrácia zložiek na výstupe z vrchu kolóny rovná koncentrácii vstupujúceho regeneračného plynu, keďže sa už v kolóne plynná fáza neobohacuje o desorbovaný podiel, a režim desorpcie sa tak môže ukončiť. Použitím nášho modelu možno prostriedkami systému Maple koncentračné alebo teplotné priestorové profily vizualizovať dynamicky, v závislosti na čase, a získať tak lepší prehľad o dynamike celého procesu sušenia.

Obr. 6 Profil naadsorbovaných množstiev separovaných zložiek v okamihu prepnutia z adsorpčného na desorpčný (t = 2,69 hod), L = 6,2 m

Obr. 7 Teplotný profil v kolóne v polovici desorpčného režimu (t = 3,03 hod), L = 6,2 m

5. Závěr

Uvedený matematický model je schopný predpovedať dobu záťaže do nasýtenia adsorbenta a dobu regenerácie pri desorpcii za zvýšenej teploty. Simuláciou použitím tohto modelu je tiež možné sledovať vplyv rozličných prevádzkových parametrov na koncentračné a teplotné podmienky pozdĺž celej adsorpčnej kolóny v čase. Pochopiteľne existujú možnosti, ako obsah tejto práce rozšíriť a spresniť. Prezentovaný model adsorpčnej kolóny sa dá v mnohých smeroch spresniť jednak zavedením menšieho množstva zjednodušujúcich predpokladov, jednak experimentálnou prácou. Uvažovaním niektorých dejov, ktoré sme zanedbali (axiálna a radiálna disperzia, tlaková strata, kinetika adsorpcie, adsorpčné tepla, neadiabatické podmienky atď.), by sme získali rigoróznejší model adsorpčnej kolóny, potrebovali by sme však viacej experimentálne zistiteľných údajov o náplni a chemických zložkách obsiahnutých v plyne. V riešení zložitejšieho modelu by mohlo byť nápomocné i použitie komerčného programu na riešenie adsorpčných procesov, napr. Aspen Adsorption. Spresnenie modelu by bolo možné aj uvažovaním väčšieho počtu adsorbujúcich sa zložiek, s čím by však narástlo okrem počtu rovníc v sústave aj množstvo experimentálnej práce. Zaujímavé by tiež bolo sledovať vplyv vrstvy náplne Sorbead WS na proces sušenia, čo by vyžadovalo platnosť iných hodnôt pre vlastností z tab. 1 na určitom úseku diskretizačnej siete.

Literatura

- 1. Novák, J. P. et al.: Termodynamické vlastnosti plynů. VŠCHT, Praha 2007.
- Dymond, J. H. et al.: Landolt-Börnstein Virial Coefficients of Pure Gases and Mixtures. Subvolume A: Virial Coefficients of Pure Gases (Vol. 21). Springer-Verlag, Berlin 2002.
- Gonzalez, A. J., Holland, C. D.: Adsorption Equilibria of the Light Hydrocarbon Gases on Activated Carbon and Silica Gel; AIChE Journal, 17 (2), 1971, 470-475.

- 4. Pedram, E. O., Hines, A. L.: Pure Adsorption of Water on Mobile Sorbead R Silica Gel; Journal of Chemical Engineering Data , 28 (1), 1983, 11-14.
- 5. BASF: KC-Trockenperlen H (Propekt). http://www.catalysts.pro/downloads/public/pdfs/Adso rbents/82011BF-9244_A4_KC-Trock-H Datasheet.pdf (prístupné 17.12, 2012).

Summary

Martin Šoltýs^a, Jozef Markoš^b ^aeustream, a.s. ^bInstitute of Chemical and Environmental Engineering, Slovak University of Technology

Mathematical Modelling of Natural Gas Dehydration by Adsorption Process

The paper deals with gas dehydration and hydrocarbon recovery from natural gas using adsorption process. A mathematical model of adsorption process is developed for the simulation of natural gas dehydration on a real unit which is capable of prediction of loading and regeneration time. The results are discussed. The paper also provides theoretical background for understanding the process and problem solving.