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Poultry litter is an abundant agricultural waste that poses a health risk when improperly disposed. To 

mitigate this problem, poultry litter can be used as fuel in combustion. The objective is to develop models that 

can optimize pyrolysis parameters for improved biochar quality and yield. Prior, the poultry litter is deminer-

alized to reduce inorganic elements. RSM–CCD method developed models and optimized temperature, particle 

size, and reaction time to determine the outputs (biochar yield, higher heating value, H/C ratio, and energy 

yield). The developed models were significant with a p–value < 0.05. Maximum biochar yield (59.49%) was 

obtained at optimum pyrolysis parameters of 300 °C, 2.47mm, and 15 min. Maximum higher heating value 

(22.2MJKg–1) and energy yield (70.00%) were obtained at 300 °C, 4.04mm, and 15 min. Low H/C ratio was 

0.03 at 550 °C, 1.17mm, and 15 min. ANOVA analysis verified the validity and degree of fitness of the devel-

oped models. Low standard deviation (< 7.00), small coefficient of variation (< 14.00%), high R2 (> 0.80), low 

difference of Adjusted R2 and Predicted R2 (< 0.20) and high adequate precision (> 4.00) verified the model’s 

adequacy for good precision. Models’ desirability function was satisfactory (> 4) with a 5.00% deviation from 

experimental values. 
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1. Introduction 

The world's energy consumption has been substan-

tially increasing at a 5.00% per annum growth rate in the 

past decade due to global population growth (1.10% per 

annum) and industrialization [1,2]. Such an increase in 

growth has resulted in depending heavily on fossil fuels 

for energy production due to their availability in abun-

dance. However, fossil fuels are not renewable and when 

combusted they contribute to the emissions of green-

house gases (CO2, NOx, and SOx) which results in an in-

crease of the earth’s surface temperature [3]. An alterna-

tive fuel source is relevant to substitute the application of 

fossil fuels, and biomass energy has that potential. Bio-

mass is a heterogeneous organic matter derived from dif-

ferent sources such as agricultural waste, human waste, 

and forest that can be used for energy applications as it is 

renewable, low cost and has an almost net zero CO2 emis-

sion [4]. Biomass accounts for 14.00% of the global en-

ergy consumption while ranked fourth as the most uti-

lized energy source [5].   

Poultry litter is a potential biomass waste that can be 

utilized to supplement fossil fuels due to its abundant 

availability, with its poultry production industry occupy-

ing 47.00% of the global agriculture sector  [6]. Such re-

source (poultry litter) must be disposed of properly to 

avoid water contamination through leaching of its inor-

ganic elements and to reduce flies as they are vectors for 

bacteria that pose a risk to human and animal health [7]. 

To counter these adverse effects, poultry litter waste can 

be utilized as a raw material for energy production [8].   

Poultry litter resembles uneven particle sizes, high 

ash, high moisture, high inorganic elements, and low en-

ergy content [9]. When combusted, the poultry litter pro-

duces a low flame temperature that reduces the thermal 

combustion performance. This promotes the production 

of particulate and COX emissions, which tend to pollute 

the environment and corrode or agglomerate the reactors   

[10]. To reduce the mentioned combustion effects caused 

by poultry litter, the feedstock is pretreated by deminer-

alizing and thermochemical converting to biochar, bio-

oil, or biogas [10]. 

Demineralization reduces the composition of inor-

ganic elements in poultry litter, thus improving the feed-

stock quality. The demineralization is categorized as me-

chanical size fractioning or solvent treatment. Mechani-

cal size fractioning separates the inorganic elements by 

sieving the poultry litter into different particle-size seg-

ments [11]. Solvent treatment can be either acid or water 

leach treatment. Acid leach treatment reduces the inor-

ganic elements by using acid–aqueous solvents (AcOH, 

H2SO4) to dissolve elements, whereas the water solvent 

utilizes tap water or deionized water to dissolve the ele-

ments [12]. Compared to water treatment, the acid treat-

ment effectively reduces the inorganic elements; how-

ever, its application can change the poultry litter's physi-

cochemical structure [13]. Water treatment is easy to use 

and inexpensive, and it only dissolves the soluble inor-

ganic elements without affecting the biomass composi-

tion [13].  

Pyrolysis is commonly used to thermochemical con-

vert poultry litter into biofuels (biochar, bio–oil, or bio-

gas). The biofuels produced have better physicochemical 



PALIVA 15 (2023), 3, pp. 101-115 Multivariate optimization of pyrolysis process parameters for biochar production 

DOI: 10.35933/paliva.2023.03.05 102 

properties and high energy content than untreated poultry 

litter. The quantity of biochar, bio–oil, or biogas pro-

duced after the pyrolysis reaction depends on the reactor 

temperature, residence time, heating rate, feedstock par-

ticle size, pressure, and reactor design [14]. To favor 

more production of biochar over bio–oil and biogas, the 

pyrolysis reaction parameters should have a long resi-

dence time (>1hr), low reaction temperature (300–

500 °C), and low heating rate (5–20 °Cmin–1) [15]. Song 

and Guo  [16] noted a high biochar yield of 45.71–

60.10% at temperature range of 300–500 °C and particle 

size < 4.00mm when poultry litter was pyrolyzed. For en-

ergy application, high quality biochar has a carbon mass 

fraction and H/C ratio of ≥ 50.00% and < 0.70 [17]. 

In this study, application of quality biochar derived 

from pyrolyzed demineralized poultry litter is desired as 

the fuel will combust efficiently with little particulate 

matter containing inorganic elements being emitted while 

producing a high energy yield compared to its parent bi-

omass. According to literature review, most studies have 

used one-factor-at-a-time method (OFAT) to explore and 

determine the pyrolysis parameters that yield high bio-

char derived from demineralized poultry litter [15]. The 

main drawback of OFAT is that it is a time-consuming, 

money-consuming and cannot quantify the simultaneous 

interaction relationship between pyrolysis parameters 

and the response (yield and quality), especially when fac-

toring multiple response outputs [18]. However, the re-

sponse surface methodology (RSM) can be used to fix 

these flaws. RSM primarily consists of statistical and 

mathematical techniques for designing experimental ar-

chitecture, empirically modelling the process conditions 

with one or more outputs, analyzing the individual and 

combined effects of the process conditions, and ulti-

mately determining the best–optimized conditions to ob-

tain the desired or ideal output, all with condensed real 

experimental trials [19]. RSM has the ability to relate 

non-linear multivariable data to predict responses with 

high precision of accuracy. In order to compare the effect 

of the pyrolysis parameters on multiple output responses, 

the desirability function normalizes the responses to a 

range between 0 and 1 [18]. For example, an entirely un-

desirable reaction has a desirability rating of 0, while an 

entirely desired response has a value of 1 [20]. As a re-

sult, the best-suited parametric condition for optimization 

is one with a desirable value closer to 1.  

The study uses the RSM method to develop multiple 

models that can optimize the production of biochar from 

demineralized poultry litter using pyrolysis process. The 

models developed will predict biochar yield, higher heat-

ing value, H/C ratio, and energy yield.  

 

2. Experimental part 

2.1. Collection and demineralization of poultry litter 

For this study, samples of poultry litter (sunflower 

husks, wood shavings, and manure) were gathered from 

Tshipane farm in Palapye, Botswana. The feedstock was 

dried in an oven (Systronix Scientific, 278, South Africa) 

for 24hrs at 105 °C and grinded using a ball mill (Pulvei-

sette 6, FRITSCH, Germany) for 15 min. The collected 

poultry litter was demineralized by washing with deion-

ized water at a biomass-to-solvent ratio of 1:10 (w/v) at 

25 °C for 2hrs while being stirred continuously with a 

magnetic stirrer [21]. The samples were later rinsed with 

deionized water until a pH (Envtek, ENV49, India) of 7 

was reached, dried in an oven at 105 °C for 24hrs, and 

sealed in a desiccator [12]. After demineralization, the 

samples were characterized for their physicochemical 

properties (Proximate, ultimate, and higher heating 

value). Proximate analysis was carried out using a ther-

mogravimetric analyzer (Leco TGA 701, USA) accord-

ing to ASTM D7582 MVA standard [22]. Ultimate anal-

ysis was carried out using an elemental analyzer (Thermo 

scientific flash 2000 CHNS/O, USA) measured accord-

ing to the ASTM D5291–96 standard [23]. An oxygen 

bomb calorimeter (IKA C6000, USA) measured the 

higher heating value according to the ASTM D5865–12 

[24]. The proximate, ultimate, and higher heating value 

of the demineralized poultry litter are shown in Table 1.  

 

Table 1 Proximate, ultimate analysis and higher heating 

value of demineralized poultry litter. 

Proximate analysis [weight %, dry basis] 

Moisture content 5.37 

Volatile matter 72.10 

Ash content 8.16 

Fixed carbon 19.74 

Ultimate analysis [weight%, dry ash free basis] 

Nitrogen 1.72 

Carbon 40.70 

Hydrogen 5.35 

Sulfur 1.23 

Oxygen 42.25 

Higher heating value [MJkg–1] 15.65 

Lower heating value  [MJkg–1] 14.45 

 

The inorganic elements in the demineralized poultry 

litter were measured using the handheld portable X-ray 

fluorescence machine (Olympus Delta-50 Premium, 

USA) under the Geochem method, and the results were 

recorded in Table 2.   

 

Table 2 Inorganic elements composition in the deminer-

alized poultry litter. 

Element  Content [%] Element  Content [%] 

Silicon 1.13 Calcium 3.57 

Phosphorus 0.50 Aluminum  1.89 

Sulphur 0.48 Iron 0.75 

Chlorine 0.72 Chromium 0.05 

Potassium 2.27 Manganese 0.14 

Copper 0.04 Zinc 0.08 

 

2.2. Pyrolysis experimental set-up and procedure 

The pyrolysis experiment was conducted in a labor-

atory-scale fixed bed reactor in the Department of Chem-

ical Engineering at Botswana International University of 
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Science and Technology, Palapye, Botswana. The pyrol-

ysis reactor consisted of the following components:  fixed 

bed reactor (TK01), condensers (TK02, TK03, and 

TK04), and incondensable gaseous holder (TK05), as 

shown in Fig. 1. The condensers TK02 and TK03 were 

used to recover the aqueous oil phase, and TK04 recov-

ered the organic condensate. The steel tube (ID: 0.06 m 

and H: 0.6 m) was inserted inside a vertical muffed tube 

electrical furnace, and upon the pyrolysis, the gases pro-

duced travelled through the condensers (coolant at 

20 °C), and condensable gases were converted to liquid 

bio–oils while the incondensable gases were kept in the 

incondensable gaseous holder.   

 

 

Fig. 1 Pyrolysis machine schematic layout. 

Prior to the pyrolysis reaction, N2 gas was flashed 

into the reactor for 15 min at 101.3kPa to create an inert 

environment. A known mass of the demineralized poul-

try litter was loaded into the reactor, and the operating 

parameters (temperature, particle size, and reaction time) 

were set with reference to the Response Surface Method-

ology Central Composite Design experimental matrix, as 

explained in Section 2.3. After each run, the reactor was 

switched off and cooled to room temperature before re-

moving the biochar in the fixed bed reactor chamber 

(TK01). The biochar was weighed and calculated under 

a dry basis, as shown in Equation 1, to establish the bio-

char yield (BY) [15] 

100%F

O

W
BY

W
=       (1) 

where WF is the biochar weight, and WO is the de-

mineralized poultry litter weight. 

 

2.3. Response surface methodology design matrix  

Response Central composite design (CCD) optimiz-

ing tool of the response surface methodology was used to 

determine the optimum pyrolysis parameters that yield 

maximum biochar with high quality. This study used 

Stat-Ease Design Expert software version 13.0.5.0 to for-

mulate the CCD matrix. A total of 20 experimental sets 

were formulated, including 6 axial points, 6 replicate 

points, and 8 factorial points. Three independent process 

parameters selected were temperature (A), particle size 

(B), and reaction time (C), with 5 different levels as 

shown in Table 3. Particle sizes were segmented into dif-

ferent sizes using a sieve according to ISO 585/3310-1 

mesh sizes [25]. The data of the input parameters were 

normalized by converting the uncoded to coded values 

using Equation 2 [19]. 

 

-real average

coded

X X
X

X
=


    (2) 

where Xcoded is the coded values of the independent 

variables, Xreal is the real value of the independent varia-

ble in uncoded units, Xaverage is the average of the low and 

high values for independent variables, ΔX = step change. 

Biochar yield (BY), higher heating value (HHV), 

hydrogen-to-carbon ratio (H/C ratio), and energy yield 

(EY) were the selected responses, understudy. Biochar 

HHV was measured using a bomb calorimeter (Super-

cal2, South Africa) according to ASTM D5865–12 

standard [24]. The H/C ratio was determined by first de-

termining the biochar's elemental composition 

(CHNS/O) and derive the hydrogen-to-carbon ratio 

(H/C ratio). The elemental composition was measured 

using the elemental analyzer (Thermo scientific flash 

2000 CHNS/O, USA) according to ASTM D5291–96 

standard for CHNS contents [23].  Then the oxygen con-

tent was determined by subtracting CHNS constituents 

from 100 as shown in Equation 3. The EY was calculated 

using Equation 4 [19]. 

 

100-( )%O C H N S Ash= + + + +   (3) 

 

(%)F

O

HHV
EY BY

HHV
=     (4) 

 

where HHVF is the higher heating value of biochar, 

and HHVO is the higher heating value of demineralized 

poultry litter. The following regression model was used 

to estimate the mathematical correlations between three 

independent variables and each response as expressed in 

Equation 5. 
 

Table 3 Experimental factors and coded levels for independent variables used in the CCD matrix. 

Variable Coded -1.682 -1 0 +1 +1.682 

Temperature [ °C] A 214.80 300.00 425.00 550.00 635.22 

Particle size [mm] B 0.03 1.17 2.84 4.51 5.66 

Time [min] C 4.77 15.00 30.00 45.00 55.22 
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Table 4 Central Composite Design experimental design matrix and the responses. 

Run Temperature 

[ °C] 

Particle size 

[mm] 

Reaction 

time [min] 

Biochar 

yield [%] 

HHV 

[MJKg–1] 

H/C ratio Energy 

Yield [%] 

1 550.00 1.17 45.00 44.45 11.97 0.03 33.99 

2 425.00 2.85 4.77 37.92 21.47 0.04 52.01 

3 550.00 1.17 15.00 43.23 12.92 0.03 35.69 

4 214.78 2.85 30.00 79.78 17.24 0.10 87.88 

5 300.00 1.17 15.00 65.43 15.56 0.08 65.03 

6 550.00 4.52 45.00 31.90 21.17 0.02 43.15 

7 425.00 2.85 30.00 39.62 11.35 0.04 28.72 

8 425.00 2.85 30.00 36.72 21.62 0.04 50.71 

9 300.00 4.52 45.00 44.24 23.43 0.06 66.24 

10 550.00 4.52 15.00 33.52 21.58 0.02 46.22 

11 300.00 4.52 15.00 44.12 23.45 0.06 66.09 

12 425.00 2.85 30.00 37.30 21.62 0.04 51.53 

13 425.00 5.66 30.00 34.01 23.26 0.03 50.54 

14 425.00 2.85 55.23 36.46 20.45 0.03 47.64 

15 425.00 2.85 30.00 37.11 22.35 0.04 52.99 

16 425.00 2.85 30.00 36.43 16.11 0.04 37.50 

17 425.00 2.85 30.00 34.94 24.28 0.04 54.20 

18 300.00 1.17 45.00 57.82 14.32 0.08 52.91 

19 635.22 2.85 30.00 34.79 19.89 0.02 44.20 

20 425.00 0.03 30.00 60.00 6.82 0.05 26.14 

2

0

1 1 1

k k k

i i ii i i i j

i i i

Y X X X X   



= = =

= + + +

+

     (5) 

 

where Y is the predicted response (BY, HHV, H/C, 

and EY), Xi and Xj are the input parameters (A, B and C), 

and b is the regression coefficient, o, i, j are the intercept, 

linear and quadratic effects, k and Ꜫ are the number of 

parameters and random error.  

After inserting the experimental response variables 

into the CCD design matrix (Table 4), models were gen-

erated. The validity of the constructed models was eval-

uated using the analysis of variance method (ANOVA). 

The degree of model fitting was assessed using correla-

tion coefficients (R2), lack–of–fit test, and the signifi-

cance level of 0.05 using probability values (p-values) 

and Fisher's test values (F-values). The contour plots 

(2D), response surface plots (3D), and residual plots were 

developed from the models. Derringer's desirability 

method provided in the Stat-Ease Design Expert software 

version 13.0.5.0 was used on each model to determine the 

optimum independent variable parameters that can pro-

vide optimum performance values of the intended re-

sponses. 

  

3. Results and discussion 

3.1. Models for biochar production 

The response results of biochar yield, higher heating 

value, H/C ratio, and energy yield were inserted into the 

Stat-Ease Design Expert software version 13.0.5.0 as 

output response 1–4 respectively into the proposed de-

sign discussed in Section 2.3 and shown in Table 4. 

These results were used to develop empirical models ex-

pressed in terms of coded factors (Equations 6–9).  

 

2 2 2

36.76 13.38 7.39 0.76 1.58

6.76 3.11 6.06

BY A B C AB

A B AB

= − − − +

+ + +
 (6) 

 

18.54 0.3423 4.58 0.3165HHV A C= − + −  (7) 

 

2 2 2

/ 0.0370-0.0251 -0.0060 -0.0011

0.0019 0.0001 0.0012

0.0074 0.0023 -0.0002

H C A B C

AB AC BC

A B C

= +

+ + +

+ +

  (8) 

 
2

2

46.98-12.06 5.50 -1.76 6.86

-2.93

EY A B C A

B

= + + +
 (9) 

 
The models with coded factors are used to predict 

the output response at any given level of each process pa-

rameter. In addition, the coefficient factors in each model 

signify the relative impact of each process parameter on 

the response. It can be observed from Equations 6–9 that 

the linear coefficients of temperature (A) have a negative 

effect on the BY, HHV, H/C ratio, and EY. Particle size 

(B) has a negative effect on the BY and H/C ratio but 

positive effect on HHV and EY. The reaction time (C) 

had a negative effect on the BY, HHV, H/C ratio, and 

EY. Quadratic coefficients of temperature (A2) had a pos-

itive effect on the BY, H/C ratio, and EY. The quadratic 

particle size (B2) had positive effect on the BY and H/C 

ratio and negative effect on the EY. The quadratic effect 

reaction time (C2) had negative effect on the H/C ratio 

response. The interaction of temperature and particle 

(AB) size had positive effect on the BY and H/C ratio. 

That of AC and BC had positive effect on the H/C ratio. 
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BY was observed to be affected positively by the quad-

ratic interaction of AB2. The interaction of temperature, 

particle size, and reaction time has significant effect on 

biochar production through the pyrolysis process of the 

demineralized poultry litter. The process parameters 

were analyzed for their significance to the above devel-

oped models, and their variance were discussed in the 

subsequent sections.   

 

3.2. Statistical analysis of the responses  

To validate the experimental results and the models 

developed above, the analysis of variance using ANOVA 

was applied in testing for significance on all the models 

and validated statistically using the Fisher test value (F-

value), p–value, and lack of fit as shown in Table 5. The 

developed regression models of BY, HHV, H/C ratio, 

and EY had higher F-values of 93.27, 8.77, 307.25, and 

14.24, respectively, with a p–value < 0.0001 except for 

HHV, which has a p–value < 0.0011. This means that 

they are 0.01% chance (BY, H/C ratio, EY) and 0.11% 

chance (HHV) that the models F–value might occur due 

to noise hence making all the regression models signifi-

cant [18]. The F–value compares the developed regres-

sion model's mean square value and the residuals' mean 

square values (i.e., error) [19]. Therefore, the F–value 

and sum of squares should be higher while the p–value 

should be lower. This ensures the developed model is re-

liable and can be reproduced while maintaining a good 

relationship between the response and the independent 

variables [15]. The F–values (along with p–values) of 

lack of fit for BY, HHV, H/C ratio, and EY are 2.65 

(0.1504), 0.22 (0.9818), 2.25 (0.1972) and 0.12 (0.9970). 

The lack of fit developed from all the models are insig-

nificant, all with a p–value > 0.05, and they are 15.04%, 

98.18%, 19.72%, and 99.70%, respectively, that the F-

value might occur due to noise. The lack of fit shows the 

inadequacy of the regression model in explaining the ex-

perimental data in the sphere at the points not included in 

the regression [26].  Therefore an insignificant lack of fit 

shows that the model fits the data well and is the desired 

fit [26]. 

 

Table 5 ANOVA for the fitted models. 

Source Sum of square df Mean Square F–value p–value 

Biochar yield  

Model 2966.20 7 423.75 93.27 <0.0001 

Residual 54.52 12 4.54   

Lack of Fit 42.94 7 6.13 2.65 0.1504 

Pure error 11.57 5 2.31   

Cor Total 3020.75 19    

Higher Heating Value  

Model 289.11 3 96.37 8.77 0.0011 

Residual 175.89 16 10.99   

Lack of Fit 58.06 11 5.23 0.22 0.9818 

Pure error 117.83 5 23.57   

Cor Total 465.00 19    

H/C ratio 

Model 0.01 9 0.00 307.25 <0.0001 

Residual 0.00 10 0.00   

Lack of Fit 0.00 5 0.00 2.25 0.1972 

Pure error 0.00 5 0.00   

Cor Total 0.01 19    

Energy yield  

Model 3311.82 5 662.36 14.24 <0.0001 

Residual 651.39 14 46.53   

Lack of Fit 111.86 9 12.43 0.12 0.9970 

Pure error 539.53 5 107.91   

Cor Total 3963.21 19    

where: p-value < 0.05 is significant, df: Degree of freedom.  

 

Table 6 Model summary statistics for biochar yield, higher heating value, H/C ratio and energy yield.  

Source  Standard 

deviation 

Mean Coefficient of 

variation [%] 

Included significant factors only Adequate 

precision 

    R2 Adjusted R2 Predicted R2  

Biochar yield 2.13 43.49 4.90 0.98 0.97 0.85 33.82 

Higher heating Value 3.32 18.54 17.88 0.62 0.55 0.50 10.38 

H/C ratio 0.00 0.04 4.37 0.99 0.99 0.98 62.80 

Energy yeild 6.82 49.67 13.73 0.84 0.78 0.75 15.32 
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Table 7 ANOVA results for the parameters in the models.  

Source Sum of square df Mean Square F–value p–value 

Biochar yield 

A-Temperature 1012.06 1 1012.06 222.76 < 0.0001 

B-Particle size 744.92 1 744.92 163.96 < 0.0001 

C-Reaction time 7.81 1 7.81 1.72 0.2144 

AB 19.99 1 19.99 4.40 0.0578 

A² 661.95 1 661.95 145.70 < 0.0001 

B² 140.66 1 140.66 30.96 0.0001 

AB² 121.81 1 121.81 26.81 0.0002 

Higher heating value 

A-Temperature 1.60 1 1.60 0.15 0.7078 

B-Particle size 286.14 1 286.14 26.03 0.0001 

C-Reaction time 1.37 1 1.37 0.12 0.7289 

H/C ratio      

A-Temperature 0.01 1 0.01 2380.17 < 0.0001 

B-Particle size 0.00 1 0.00 136.42 < 0.0001 

C-Reaction time 0.00 1 0.00 4.40 0.0623 

AB 0.00 1 0.00 7.92 0.0183 

AC 0.00 1 0.00 0.04 0.8406 

BC 0.00 1 0.00 3.22 0.1032 

A² 0.00 1 0.0008 218.57 < 0.0001 

B² 0.00 1 0.0001 21.47 0.0009 

C² 0.00 1 0.00 0.10 0.7633 

Energy yield 

A-Temperature 1985.89 1 1985.89 42.68 < 0.0001 

B-Particle size 413.04 1 413.04 8.88 0.0099 

C-Reaction time 42.47 1 42.47 0.90 0.3556 

A² 685.42 1 685.42 14.73 0.0018 

B² 125.01 1 125.01 2.69 0.1235 

where: p-value < 0.05 is significant, df: Degree of freedom.  

 
Table 6 further verified the adequacy of the developed 

models by determining the standard deviation, mean, R2 val-
ues and adequate precision. A low standard deviation re-
flects that the model is well suited for optimization hence 
making the model more desirable and good [27]. All the de-
veloped models for BY, HHV, H/C ratio, and EY had a low 
standard deviation at 2.13, 3.32, 0.00, and 6.82, respectively, 
indicating that the models are well suitable for optimization. 
The mean values for BY, HHV, H/C ratio, and EY were at 
43.49, 18.54, 0.04, and 49.67, respectively, with small coef-
ficient of variation at 4.90%, 17.88%, 4.37%, and 13.73% 
respectively, showing a small percentage error on the mean 
values.  This indicates that the values that constitute mean 
values deviate from each other at a small fraction making 
the models good for reproducibility [26]. The coefficient of 
determination indicates a model's adequacy, accuracy, and 
availability, giving it significance and quality for applica-
tion. The model's coefficient of determination (R2) should 
be close to 1, indicating a perfect fit of the model to the data 
[28]. Further, the corrected goodness–of–fit (Adjusted R2) 
recognizes the percentage of difference in the design points 
explained by the model's input data. The models for BY, 
HHV, H/C ratio and EY had strong correlation coefficients 
at 0.98, 0.62, 0.99 and 0.84 and the difference between the 
R2 and Adjusted R2 were 0.01, 0.07, 0.00 and 0.06 implying 
that a small fraction of the total variation cannot be ex-
plained by the models respectively.   

Also, the difference between the Adjusted R2 and the 
Predicted R2 on all models was less than 0.2 (0.12, 0.05, 
0.01 and 0.03) meaning that the Adjusted R2 is in reasonable 
agreement with the Predicted R2. The Adequate precision 
values for all the models were greater than 4 which indicates 
an adequate signal that is desirable hence all the models are 
effective to be used to navigate the design space. 

Table 7 shows the ANOVA results of the model terms. 
The term with a p–value of less than 0.0500 is significant 
and values greater than 0.050 are not significant to the re-
gression model. As shown in Table 7, the linear, square, in-
teraction terms and square interaction terms were significant 
in every model except for the following terms in each model 
(non–significant terms): BY (C), H/C ratio (AC, BC and C2) 
and EY (C and B2).  

The graphical presentation of the predicted and the ac-
tual values of models for BY, HHV, H/C ratio, and EY are 
shown in Fig. 2a–d. The prediction and actual responses on 
all the models (BY, HHV, H/C ratio, and EY) have an al-
most linear relationship with a negligible variation. This 
shows a strong correlation between the model for the pre-
diction and actual values making the model reliable and ap-
plicable in predicting the responses under study. A desired 
model should have a close relationship with the experi-
mental data [37]. The effect of each independent variable on 
the response is determined by plotting these variables on the 
perturbation graphs. 
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(a) 

 

 
(c) 

 

 
(b) 

 

 
(d) 

Fig. 2 Actual vs predicted values of the model: (a) biochar yield, (b) higher heating value, (c) H/C ratio, and (d) energy 

yield.

The perturbation plots identify which independent 

variable is most effective to the response by shifting only 

one factor (the one whose effect is required), while others 

are constant. The perturbation plot is done by identifying 

the reference point and adjusting the range at the center 

of each independent variable. Next, a plot of the response 

versus the deviation of the independent variables from 

the reference point is done to study their sensitivity to the 

response. A flat line on the plot indicates that the inde-

pendent parameter has the least effect on the response, 

while a curvature or step slop has the most effect on the 

response [18]. As shown in Fig. 3a, the order of the inde-

pendent variables to biochar yield response from the most 

to the least effective is as follows: temperature (A), par-

ticle size (B), and reaction time (C). This implies that 

temperature (A) gives the most response compared to 

particle size (B) and reaction time (C) in producing a high 

yield of biochar. In Fig. 3b, on the higher heating value, 

particle size (B) had the most effective response com-

pared to the temperature (A) and reaction time (B), which 

had an almost flat line indicating the least effective pa-

rameters to this response. On the H/C ratio output 

(Fig. 3c), temperature (A) followed by particle size (B) 

had the most significant effect on the response. Reaction 

time (C) had an almost flat line indicating that its effect 

on the H/C ratio response is negligible. In Fig. 3d, tem-

perature (A) and particle size (B) had the most effective 

response to the energy yield response compared to the re-

action time (C), which had an almost flat line. 

The normality assumption is established by plotting 

normal probability vs residuals graphs validating the 

models. Residuals demonstrate how well the ANOVA as-

sumption is met, whereas internally studentized residuals 

estimate the standard deviation as a function of the actual 

and predicted values [29].  
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(a) 

 

 
(c) 

 
(b) 

 

 
(d) 

Fig. 3 Perturbation plots for: (a) biochar yield, (b) higher heating value, (c) H/C ratio, and (d) energy yield 

 

A straight line on the normal probability of experimental 

residuals is desired for the normality of the assumption to 

be satisfied [30]. Fig. 4a–d in the supplementary data 

shows the normal probability plots of biochar yield, 

higher heating value, H/C ratio, and energy yield respec-

tively. These plots demonstrate that the points on the 

plots follow a straight line, indicating that the residuals 

are normally distributed, and the normality assumption is 

therefore supported. 

 

3.3. Contour plots parametric interaction of process 

variables in the model  

The interaction effect of independent variables on 

the process parameter output is explained best by study-

ing the pattern behavior of contour plots [19]. In addition, 

contour plots help in obtaining optimum process param-

eters. Subsections 3.3.1–3.3.4 explain the parametric in-

teraction of the independent variables within the models 

using the contour plots.  The optimum region to a partic-

ular desired response is noted with a red dot inside the 

small ellipses contour plot.  

 

Parametric interaction of the independent variables 

on the biochar yield model 

The interaction of pyrolysis temperature (A) and 

poultry litter particle size (B) has a significant effect on 

the biochar yield produced, as noted by the contour plots 

in Fig. 5a–b. At a fixed reaction time of 30 min, an in-

crease in temperature from 300 to 550.00 °C and particle 

size from 1.17 to 4.52mm decreases the biochar yield 

from 60 to 30%.  This reduction of biochar yield may be 

due to the thermal decomposition of the lignocellulosic 

compound such as lignin, cellulose, and hemicellulose, 

combustion, increased volatiles in the organic matter, and 

the dehydration of hydroxyl compounds [15]. 
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(a) 

 

 
(c) 

 
(b) 

 

 
(d) 

Fig. 4 The studentized residual and normal percentage for: (a) biochar yield, (b) higher heating value, (c) H/C ratio, and 

(d) energy yield 

 

Lee et al. [15] investigated the pyrolysis of palm 

kernel shells and empty fruit bunch and noted a decrease 

in biochar yield as the temperature increased [15].  Arafat 

Hossain et al. [18] also showed that higher temperatures 

reduced biochar output during pyrolysis. 

Biomass particle size affects the rate at which heat 

is transferred into the biomass during pyrolysis. Hence a 

need to study its simultaneous interaction if of im-

portance. Sensoz et al.[31] investigated the effect of par-

ticle size on rapeseeds at 500.00 °C on biochar yield. An 

increase in particle size from 0.22 to 0.85mm decreased 

the biochar yield from 22.18 to 20.44%. However, at par-

ticle sizes above 1.8mm, the biochar decreased. A similar 

effect was also reported by Şensöz and Kaynar [32], who 

observed a decrease in biochar yield with the increase in 

particle size at 400.00 °C temperature. Other researchers 

[33,34] noted a decrease in biochar yield when particle 

size increased. Time did not affect the biochar yield. This 

finding was in agreement with other researchers who 

found out that reaction time does not affect the biochar 

yield [35–37].  

Reaction time had no significant effect on the bio-

char yield. High biochar yield is favored when reaction 

time is prolonged from hours to days at low temperatures 

giving time for the biomass to undergo secondary and 

polymerization reactions that favors more yield [20]. The 

reaction time (4.77–55.22 min) in the study was insuffi-

cient to have a significant effect on the biochar yield. 

However, Mukherjee [38] noted a decrease in biochar 

yield when the reaction time increased from 20.00 to 

90.00 min under varying temperature conditions. The 

role of reaction time is often dominated by temperature, 

and this makes the analysis of the effect of reaction time 

on biochar yield difficult to comprehend.  
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Parametric interaction of the independent variables 

on higher heating value model  

 The effect of pyrolysis temperature (A) and poultry 

litter particle size (B) on the biochar's higher heating 

value is shown in Fig. 6a–b. It can be observed from these 

graphs that temperature had little effect on the higher 

heating value, while an increase in particle size had a con-

tinuous increase in the higher heating value. This obser-

vation is justified by how we prepare the poultry litter 

samples for pyrolysis. Poultry litter comprises cellulose, 

hemicellulose, and lignin material which contain high ox-

ygen content, high volatile matter, and fixed carbon com-

position. When fractioned into different particle size 

samples, the materials' proportion will not be distributed 

uniformly. For example, a small-sized fractioned sample 

is composed mainly of manure that contains cellulose and 

hemicellulose materials which have high oxygen and vol-

atiles; hence on combustion, they will produce a lower 

higher heating value as compared to a fractioned sample 

with a large particle size composed mainly of woody bed-

ding material constituting mostly the lignin material that 

has the fixed carbon. Our findings were in agreement 

with El Hanandeh et al. [39], who noted that different 

compositions of biomass material (cellulose, hemicellu-

lose, and lignin) affected the higher heating value. For 

example, deseeded carob pod biomass has 79.00% of car-

bohydrates had a higher heating value compared to oak 

acorn shell (56.00% hemicellulose) and oak acorn shell 

(54.00% cumulative hemicellulose and cellulose) [39]. 

 Reaction time had no significant effect to the higher 

heating value. Suman and Gautam [40] was in agreement 

with our findings noting a non–significant effect of reac-

tion time on higher heating value (rice husk and wooden 

dust feedstocks). Chiou [41] noted a decrease in higher 

heating value when reaction time increased (apple feed-

stock) while Mundike [42] noted an increase in higher 

heating value when reaction time increased (Lantan ca-

mara feedstock). Therefore, the effect of reaction time on 

higher heating value is difficult to interpret hence each 

study analysis its effect.  

 

Parametric interaction of the independent variables 

on H/C ratio model  

The interaction of the independent variables with 

the H/C ratio response is shown in Fig. 7. A low H/C ra-

tio in biochar is desired as it offers the fuel a higher de-

gree of aromaticity, stability, and carbonization level 

[43]. This means the fuel will have a long shelf life with-

out oxidizing with high C–C bonds compared to C–H and 

C-O bonds [15]. Fig. 7a-b shows the 2D and 3D interac-

tion graphs of temperature (A) and particle size (B) to the 

H/C ratio in the biochar. An increase in temperature and 

particle size decreased the H/C ratio. These findings were 

in agreement with Manya et al. [44], who noted a de-

crease in the H/C ratio when the temperature and particle 

size increased [44]. Fig. 7c–d shows the particle size and 

temperature interaction level to the H/C ratio in 2D and 

3D models, respectively. As particle size and time in-

creased, the H/C ratio decreased. Reaction time should be 

long to ensure high efficiency in the carbonization pro-

cess, especially when the inter and intra–particle heat 

transfer is insignificant. Abbas et al. [33] reported that for 

biochar to produce a low H/C ratio with high carboniza-

tion efficiency, aromatic degree, and good stability, the 

reaction time should be over 90 min [33]. Rection time 

had an insignificant effect to the H/C ratio of the biochar. 

Reaction time does not promote the dehydration and de-

oxygenation process [45] 

 

 

Fig. 5 Model graphs of biochar yield at a fixed reaction time (C) of 30.00 min: (a) 2D contour plot (b) 3D response sur-

face. 
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Fig. 6 Model graphs of higher heating value at a fixed reaction time (C) of 30 min: (a) 2D contour plot (b) 3D response 

surface 

 

Fig. 7 Model graphs contour plot of H/C ratio in: (a) 2D for A and B at fixed C of 30.00 min (b) 3D for A and B at 

fixed C of 30 min (c) 2D for B and C at fixed A of 425.00 °C (d) 3D for B and C at fixed A of 425.00 °C. 
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Fig. 8 Model graphs of energy yield at a fixed reaction time (C) of 30.00 min: (a) 2D contour plot (b) 3D response surface 

 

Table 8 Predicted vs experimental yield of BY, HHV, H/C ratio and EY on optimized pyrolysis parameters. 

Main output Validation 

Process parameters 

Desirability BY [%] 
HHV 

[MJkg–1] 
H/C ratio 

EY 

[%] 
A 

[°C] 

B 

[mm] 

C [min] 

BY Predicted 300.00 2.47 15.00 0.54 59.49 18.18 0.07 66.00 

 Experiment     61.06 17.80 0.07 69.00 

 Deviation [%]     2.57 2.13 0.00 4.97 

HHV Predicted 300.00 4.05 15.00 0.53 49.69 22.48 0.07 70.00 

 Experiment     50.34 21.60 0.07 69.00 

 Deviation [%]     1.29 -4.07 0.00 -0.75 

H/C ratio Predicted 550.00 1.17 15.00 0.41 45.86 13.93 0.03 35.00 

Experiment     46.72 13.21 0.03 39.00 

 Deviation [%]     1.84 -5.45 0.00 11.25 

EY Predicted 300.00 4.05 15.00 0.57 49.69 22.48 0.07 70.00 

 Experiment     50.35 22.31 0.07 72.00 

 Deviation [%]     1.31 -0.76 0.00 2.48 

3.3.4 Parametric interaction of the independent vari-

ables in the energy yield model  

It can be observed from Fig. 8a–b that a decrease in 

temperature and an increase in particle size increases the 

energy yield. A similar trend was observed by other re-

searchers [19,46,47], who noted a continuous decrease in 

energy yield when temperature increased and particle 

size decreased. An increase in temperature cause the deg-

radation of cellulose and hemicellulose through volati-

lization resulting in energy densification increase and bi-

ochar yield decrease making the energy yield to decrease 

[47].  Biomass particles with small sizes have high sur-

face area and during pyrolysis the volatiles leave the re-

action chamber fast without having time to thermal react 

resulting in low biochar yield hence causing the energy 

yield to decrease [33]. Energy yield is obtained by calcu-

lating biochar yield with higher heating value; therefore, 

their trend is in accordance with these mentioned re-

sponses [19]. Energy yield is dependent on the biochar 

yield and Higher Heating Value of the biochar, as noted 

above these parameters are non–significant making to the 

reaction time making energy yield also non–significant. 

   

3.4. Optimization and validation of process parame-

ters for the response outputs  

An input and output relationship is important to de-

velop models that can predict optimum response outputs. 

It is important to optimize the pyrolysis process of poul-

try litter to produce maximum biochar yield at an excel-

lent quality. Regression models created using RSM can 

be applied to improve the process for production in this 

regard. The optimization process was performed to max-

imize the output of biochar yield, higher heating value, 

and energy yield and to lower the H/C ratio in the bio-

char. The higher heating value, energy yield, and H/C ra-

tio maintains the quality while the biochar yield maxim-

izes the production quantity. The Stat-Ease Design-Ex-

pert software suggested the optimum conditions while 

utilizing the desirability function option.  

Table 8 summarizes the optimized process parame-

ters of the response outputs in the study suggested by the 

(b)(a)
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software. Experiments were done to validate the process 

parameters suggested by the software. To yield a maxi-

mum biochar yield of 59.49%, the temperature, particle 

size, and reaction time should be at 300 °C, 2.47mm, and 

15 min, respectively, with desirability value of 0.54. 

Maximum higher heating value of 22.48MJKg–1was 

achieved at optimized temperature, particle size, and time 

of 300 °C, 4.04mm, and 15 min, respectively, with desir-

ability value of 0.53. A minimum H/C ratio of 0.03 was 

attained when temperature, particle size, and time were 

optimized to 550 °C, 1.17mm, and 15 min, respectively, 

with a desirability value of 0.41. A maximum energy 

yield of 70.00% was achieved when the temperature, par-

ticle size, and time were optimized at 300 °C, 4.04mm, 

and 15 min, respectively, with a desirability value of 

0.57. According to the Harrington desirability function 

scale, a desirability value ranging from 0.4 to 0.6 is sat-

isfactory, and one below 0.2 is unacceptable [48]. The 

ones in our regression models were above 0.4, which 

means they are satisfactory. To verify the models, exper-

iments were carried out in accordance with their opti-

mized pyrolysis parameters that yield the main output re-

sponses in study. Table 8 shows the deviation between 

the predicted and experimental to be less than 5.00% for 

the main output response in study with BY, HHV, H/C, 

and EY yielding 61.06%, 21.60MJkg–1, 0.03, and 72.00% 

respectively under experimental procedure. Hence the 

experimental results confirm the models' suitability to be 

applied to predict output responses understudy.  

 

4. Conclusions 

In this study, the main objective was to develop 

models that can optimize the pyrolysis parameters to 

yield maximum biochar yield, maximum higher heating 

value, lower H/C ratio and maximum energy yield. 

RSM–CCD method was efficient in developing the em-

pirical models and optimizing the pyrolysis parameters 

for biochar production. ANOVA showed models high F–

values of biochar yield (93.27%), higher heating value 

(8.77 MJkg–1), H/C ratio (307.25) and energy yield 

(14.24%) with a significant p–value<0.0011. This means 

there is 0.01% chance that the models F–value might be 

due to noise thereby making the models significant. In 

addition, the models lack–of–fit were insignificant p–

value > 0.05 hence it fits the experimental data to a de-

sired fit. The models for biochar yield, higher heating 

value, H/C ratio and energy yield had a low standard de-

viation of 2.13, 3.32, 0.00, and 6.82 respectively making 

the models desirable for optimization with a low mean 

error of less than 18.00% making the models to be repro-

duced. The models for biochar yield, higher heating 

value, H/C ratio and energy yield had strong correlation 

coefficients at 0.98, 0.62, 0.99 and 0.84 and the differ-

ence between the R2 and Adjusted R2 were 0.01, 0.07, 

0.00 and 0.06 implying that a small fraction of the total 

variation cannot be explained by the models respectively. 

The Adequate precision values for all the models were 

greater than 4 which indicates an adequate signal that is 

desirable hence all the models are effective to be used to 

navigate the design space. The contour and response sur-

face plots identified interactions of the temperature, par-

ticle size and reaction time to the response outputs that 

had significant effect.  Maximum biochar yield 59.49% 

was obtained at optimum parameters of 300 °C, 2.47mm, 

and 15.00 min. Maximum higher heating value 

22.58MJkg–1 and energy yield 70.00% were obtained at 

optimum parameters of 300 °C, 4.04mm, and15.00 min. 

The H/C ratio 0.03 is lowest at optimum parameters of 

550.00 °C, 1.17mm, and 15.00 min. The models and the 

experiments deviated by less than 5.00%. The results in-

dicate a potential application of the models in predicting 

the response outputs in study when pyrolysis parameters 

are optimized. 
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