ANALÝZA TĚKAVÉHO PODÍLU BIO-OLEJŮ Z PYROLÝZY CELULÓZY, HEMICELU-LÓZY A LIGNINŮ

Martin Staš^a, Aneta Závodníková^a, Siarhei Skoblia^b, Miloš Auersvald^a, Dan Vrtiška^a, Pavel Šimáček^a, David Kubička ^a

^aÚstav technologie ropy a alternativních paliv, VŠCHT Praha, Technická 5, 166 28 Praha 6 ^bÚstav pevných a plynných paliv a ochrany ovzduší, VŠCHT Praha, Technická 5, 166 28 Praha 6 email: Martin.Stas@vscht.cz

Pyrolýzní bio-olej je kapalný produkt pyrolýzy biomasy, o kterém se uvažuje jako o potenciálním biopalivu nebo zdroji cenných kyslíkatých chemikálií. K dalšímu rozvoji ve využívání pyrolýzních bio-olejů je potřebná dostatečná znalost jejich chemického složení. V rámci této práce bylo provedeno studium chemického složení bio-olejů z pomalé a rychlé pyrolýzy základních stavebních složek biomasy, tj. celulózy, hemicelulózy a ligninu. Práce je rozdělená do dvou článků. Zde, v první části, jsou prezentovány výsledky analýz surovin pro pyrolýzu, přípravu bio-olejů a studium složení jejich těkavých podílů. Analýza těkavého podílu bio-olejů byla provedena pomocí techniky GC-MS. Získané poznatky mohou pomoci k pochopení chemického složení bio-olejů z biomasy jako celku a dosažení jejich širšího využití.

Klíčová slova: biomasa, pyrolýza, pyrolýzní bio-olej, celulóza, hemicelulóza, lignin, GC-MS

Došlo 21. 5. 2018, přijato 20. 6. 2018

1. Úvod

Pyrolýzní bio-olej je kapalným produktem pyrolýzy biomasy, který se v současnosti vyrábí již v komerčním měřítku v několika zemích (např. Finsko, Holandsko), kde nachází uplatnění zejména na lokální produkci tepla. [1] Další potenciální využití nachází bio-olej jako biopalivo v mobilních aplikacích (v motorových vozidlech), případně jako zdroj cenných kyslíkatých chemikálií. Tyto aplikace zatím ale širší komerční využití nemají. [1,2]

Bio-olej z pyrolýzy biomasy představuje obnovitelný zdroj energie a řadíme jej mezi tzv. biopaliva 2. generace. V porovnání se surovou biomasou mají bio-oleje zhruba dva až desetinásobně vyšší (v závislosti na druhu pyrolyzované biomasy) energetický obsah na objemovou jednotku. [3] V porovnání s tuhou biomasou se s kapalnými bio-oleji jednodušeji manipuluje a jsou jednodušeji transportovatelné. Na druhé straně se bio-oleje vyznačují značnými nežádoucími vlastnostmi, jako jsou např. fázová nestabilita, kyselý charakter (korozivní vlastnosti), špatná termicko-oxidační stabilita a nemísitelnost s konvenčními palivy z ropy. [4] Úprava těchto nežádoucích vlastností a rovněž optimalizace výtěžků bio-olejů vyžaduje detailní znalost jejich chemického složení.

Komplexní analýza chemického složení bio-olejů je velice obtížná, jelikož obsahují tisíce různých zejména kyslíkatých složek, které se vyznačují širokou distribucí bodů varů a molekulových hmotností, rozdílnou polaritou, reaktivitou, atd. Mnohé z těchto složek jsou navíc zastoupeny ve velice nízkých koncentracích (<0,1 %). [5,6]

Složitost chemického složení bio-olejů spočívá ve struktuře lignocelulózové biomasy, která obvykle slouží jako surovina pro pyrolýzu. Lignocelulózová biomasa je kromě minoritních složek (lipidy, terpeny, pryskyřice, minerální látky) složená ze tří základních stavebních bloků, a to celulózy, hemicelulózy a ligninu.

Celulóza je lineární biopolymer tvořený jednotkami D-glukózy vzájemně pospojovanými $(1\rightarrow 4)$ - β -glykosidickými vazbami se stupněm polymerizace přibližně 5 000 – 10 000, viz obr. 1. Zjednodušeně lze říci, že pyrolýzní rozklad celulózy probíhá dvěma základními mechanizmy, a to depolymerizací a štěpením cyklu.[7] Majoritním produktem depolymerizace je levoglukozan (1,6-anhydro- β -D-glukopyranóza) a v menším množství také vznikají další anhydrocukry a oligomerní sacharidy. Štěpení cyklu vede k tvorbě tuhého produktu (*angl.* char), vody, plynů a dalších lehčích těkavých složek, jako jsou např. aldehydy, ketony, furany, atd. [7] Nejtypičtějšími představiteli těchto složek jsou hydroxyacetaldehyd, methylglyoxal, acetol, glyceraldehyd, furfural a 5-(hydroxymethyl)furfural. [8,9]

Hemicelulóza je heterogenní biopolymer, který je složen z monomerních jednotek glukózy, galaktózy, manózy, xylózy, arabinózy, ramnózy kyseliny glukuronové a galakturonové, přičemž stupeň polymerizace je přibližně 150. Struktura hemicelulózy závisí i na druhu biomasy. Základní složkou hemicelulózy tvrdého dřeva je O-acetyl-4-O-methylglukuronoxylan tvořený substituovanými zbytky kyseliny glukuronové a xylózy. Hemicelulózu měkkých dřev tvoří hlavně (i) galaktoglukomannan složený ze zbytků manózy, glukózy a galaktózy v poměru 3:1:1 a (ii) glukomannan obsahující manózu a glukózu v poměru 3:1. Hemicelulózy trav tvoří hlavně arabinoxylany složené z arabinózy a xylózy. Pyrolýza hemicelulózy vede hlavně ke vzniku lehčích kyslíkatých sloučenin, zejména karboxylových kyselin (kyselina mravenčí, octová, propionová) a dále karbonylových sloučenin, alkoholů, furanů, atd. [7].

Obr. 1 A: Struktura celulózy, B: levoglukozan, C: monomerní jednotky hemicelulózy, D: prekurzory ligninu.
Se souhlasem držitele autorských prav převzato a upraveno z ref. [10]. Copyright 2017 American Chemical Society
Fig. 1 A: Structure of cellulose, B: levoglucosan, C: monomer units of hemicellulose, D: precursors of lignin.
Adapted from [10] with permission of authors. Copyright 2017 American Chemical Society.

Lignin je amorfní, vysoce rozvětvený biopolymer polyfenolického charakteru. Jeho základ tvoří methoxya hydroxysubstituované fenylpropanové jednotky. Pyrolýzou ligninu dochází především k tvorbě fenolických struktur, jako jsou fenoly, benzendioly a různě substituované methoxy- a dimethoxyfenoly. Lignin tvrdého dřeva tvoří guajacylpropanové (G) jednotky (koniferylalkohol obsahující jednu methoxy skupinu), dále syringylpropánové (S) jednotky (sinapylalkohol obsahující dvě methoxy skupiny) a ve velmi malém množství také p-hydroxyfenylové (H) jednotky (p-kumarylalkohol). [7] Zastoupení těchto jednotek v tvrdém dřevě je velice variabilní v závislosti na konkrétním typu dřeva. [7] Oproti tomu měkké dřevo obsahuje pouze G jednotky (až 95 %) a v menší míře (do 5 %) také H jednotky. [7] Sláma a obecně travní biomasa obsahuje ligniny s dominantním zastoupením H jednotek a v menší míře jsou zastoupeny také G jednotky. [11]

K charakterizaci chemického složení bio-olejů byla využita řada různých analytických technik, např. GC, GC × GC, GPC, HPLC, FTIR, NMR a MS. Poznatky získané těmito metodami jsou přehledně shrnuty v rešeršních článcích z nedávné doby. [5,6,10,12,13] Jednou z nejvíce využívaných analytických technik k analýze chemického složení je technika GC-MS. Tato technika umožnila detekovat v bio-olejích stovky různých sloučenin. [6] Kromě často nedostatečného chromatografického rozlišení, koeluce píků, nedostupnosti hmotnostních spekter některých složek bio-olejů v MS knihovnách je hlavní nevýhodou techniky GC-MS nemožnost charakterizace vysokomolekulárních, netěkavých sloučenin. [6]

Cílem této práce byla příprava bio-olejů ze základních stavebních bloků biomasy, tj. celulózy, hemicelulózy a ligninu. Dále byla provedena analýza pyrolýzních surovin a analýza základních fyzikálně-chemických vlastností a chemického složení připravených bio-olejů. Zde, v první části, jsou prezentovány výsledky analýz celulózy, hemicelulózy a ligninů, a také fyzikálně-chemické vlastnosti připravených bio-olejů a složení jejich těkavých podílů. Výsledky detailní charakterizace těchto z hlediska chemického složení méně složitých bio-olejů mohou pomoci získat detailnější informace o chemickém složení bio-olejů připravených pyrolýzou lignocelulózové biomasy jako celku.

2. Experimentální část

2.1. Suroviny pro pyrolýzu

Jako suroviny pro pyrolýzu byly použity základní polymery obsažené v biomase, tj. celulóza (C), hemicelulóza (H) a lignin (L). Celulóza (CAS 9004-36-4) byla zakoupena od firmy Sigma-Aldrich (produktové označení C6288) ve formě bílého prášku. Hemicelulóza z bukového dřeva a vzorky ligninů ze slámy (LSI), smrku (LSM) a buku (LB) byly dodány z pracoviště Fraunhofer CBP, Leuna, Německo. Hemicelulóza měla formu hnědočerného, poměrně dobře tekoucího sirupu, ligniny měly formu hnědých prášků.

2.2. Stanovení obsahu vody u surovin a bio-olejů

Obsah vody byl stanoven titračně metodou Karl Fischera pomocí coulometru WTK (Diram, Česká republika). K analýze byl použit titrant Hydranal Coulomat AK (Riedel den Haën). Zatímco kapalný vzorek hemicelulózy byl měřen přímo, obsah vody ve zbývajících pevných vzorcích byl měřen po rozpuštění ve vhodném rozpouštědle. Pro vzorky ligninu byl použit dimethylsulfoxid, vzorek celulózy byl rozpuštěn v dimethylformamidu. Obsah vody byl zároveň změřen i u obou rozpouštědel, což posléze umožnilo vypočítat obsah vody v původních pevných vzorcích.

2.3. Elementární analýza surovin a bio-olejů

Stanovení elementárního složení bylo provedeno přístrojem Elementar Vario EL Cube (Elementar). Kalibrace byla provedena pomocí 5 mg standardu kyseliny 4aminobenzensulfonové. Vzorek (10–13 mg) byl spalován v prostředí kyslíku za teploty přibližně 1 200 °C. Příslušné plynné produkty spálení byly po redukci separovány na chromatografické koloně a následně detekovány tepelně-vodivostním detektorem. Množství kyslíku bylo stanoveno dopočtem do 100 %.

2.4. TGA analýza surovin

TGA analýza byla provedena u vzorků surovin pro pyrolýzu. Analýza byla prováděna v dusíkové atmosféře na termováze TG-750 (Stanton Redcroft, Anglie) v rozmezí teplot 50 - 800 °C s krokem 10 °C·min⁻¹.

2.5. FTIR analýza surovin

FTIR spektra vzorků surovin byla změřena technikou zeslabeného úplného odrazu (ATR) na spektrometru IRAffinity (Shimadzu, Japonsko) s ATR nástavcem Quest (Specac, USA). Spektra byla změřena v rozsahu 4000 – 650 cm⁻¹ s rozlišením 4 cm⁻¹.

Příprava bio-olejů pyrolýzou

Vzorky bio-olejů byly připraveny pomalou a rychlou pyrolýzou. Pomalou pyrolýzou byly zpracovány vzorky celulózy, hemicelulózy a ligninu ze slámy. Rychlou pyrolýzou byly zpracovány všechny vzorky ligninů, viz tab. 1.

Tab. 1: Specifikace připravených bio-olejů **Tab. 1:** Specification of prepared bio-oils

	Pyrolýza												
Sur.		Pomalá	Rychlá										
	bio-olej	acetonový výplach	katalytická	termická									
С	PC	PCAc	-	-									
Н	PH	PHAc	-	_									
LSI	-	PSlAc	RSIK	RSIT									
LSm	-	_	RSmK	RSmT									
LB	-	-	RBK	RBT									

2.5.1 Pomalá pyrolýza

Pomalá pyrolýza byla prováděná při 500 °C za atmosférického tlaku v reaktoru, jehož uspořádání je blíže specifikováno v práci [14]. Pyrolyzováno bylo přibližně 20 g suroviny. Z procesu pomalé pyrolýzy byly získány bio-oleje z celulózy a hemicelulózy. Jelikož část kapalných podílů zůstávala ulpěná v reaktoru, byl další podíl těchto bio-olejů získán ve formě acetonového výplachu, viz tab. 1. Bio-olej z pomalé pyrolýzy ligninu ze slámy byl získán pouze ve formě acetonového výplachu.

2.5.2 Rychlá pyrolýza

Rychlá pyrolýza vzorků ligninů probíhala v reaktoru, jehož uspořádání je podrobně uvedeno v práci [15]. Pyrolyzováno bylo ~0,3 – 0,5 g vzorku, jenž byl prudce přitlačen na skleněnou vlnu o teplotě 600 °C pod proudem dusíku. Pyrolýza probíhala v katalytickém i nekatalytickém (termickém) režimu. Jako katalyzátor byla použita směs H-SZM-5 (40) a 30% aktivovaná silika, přičemž hmotnostní poměr zeolit vs. lignin byl přibližně 3,5.

2.6. GC-MS analýza bio-olejů

Plynová chromatografie s hmotnostně spektrometrickou detekcí byla použita k analýze těkavých složek ve studovaných vzorcích bio-olejů. Vzorky čistých bioolejů byly analyzovány po rozpuštění v methanolu v objemovém poměru 1:1. Vzorky acetonových výplachů byly analyzovány bez předúpravy. Podmínky GC-MS analýz jsou uvedeny v tab. 2. K ovládání přístroje a ke snímání a analýze dat byl použit software Xcalibur 2.2 (Thermo-Fisher Scientific). GC-MS spektra byla interpretována pomocí knihovny spekter (NIST 14) a literatury [6,7].

Tab. 2: Podmínky GC-MS analýz **Tab. 2:** Conditions of GC-MS analysis

Parametr	Popis
plynový chromato- graf	Focus GC (Thermo-Fisher Scien- tific)
nástřik	teplota 200 °C, split 1:50, 0,2 µl
nosný plyn	helium (5,5), průtok 0,9 ml·min-1
teplotní program	50 °C (5 min), poté 15 °C·min-1 na 300 °C (10 min)
kolona	ZB-5MSi (5 % fenyl, 95 % PDMS), 30 m x 0,25 mm x 0,25 μm
interface	280 °C
hmotnostní spektro- metr	DSQ (Thermo-Fisher Scientific)
ionizace	EI +, 70 eV
začátek snímání dat	2 min
analyzátor	kvadrupól
režim a rozsah měření	full scan, 20–400 Da
rychlost skenování	4 skeny·s ⁻¹

3. Výsledky a diskuze

3.1. Analýza surovin

Vzorky surovin pro pyrolýzu byly před samotnou pyrolýzou podrobeny stanovení obsahu vody, elementárního složení a TGA analýze. Zjištěné obsahy vody a elementární složení jsou uvedeny v tab. 3.

3.1.1 Elementární složení surovin

Nejvyšší obsah vody (~24 hm. %) byl naměřen u hemicelulózy, která měla kapalnou konzistenci. U zbylých surovin, které měly tuhou formu, se obsah vody pohyboval kolem 3 hm. %. Ligniny se vyznačovaly nejvyšším obsahem uhlíku (~66 - 68 hm. %) a nejnižším obsahem kyslíku (26 - 28 hm. %). Zcela opačný trend byl pozorován u hemicelulózy, která se vyznačovala nejvyšším obsahem kyslíku (~62 hm. %) a nejnižším obsahem uhlíku (~29 hm. %). Obsahy vodíku byly přibližně stejné (~6 hm. %) u všech surovin s výjimkou hemicelulózy, která obsahovala 8,5 hm. % vodíku. Elementární složení celulózy a ligninů je v souladu s literárními daty. [16-18] Hodnoty pro hemicelulózu se od těchto dat liší zejména v obsahu uhlíku (lit. ~42 – 44 hm. %) a kyslíku (lit. ~46-52 hm. %). [16-18] Rozdíl je pozorován i v obsahu vodíku, kde literatura uvádí hodnoty ~5,5 -6,5 hm. %. [16-18] Tyto rozdíly souvisí zejména se skutečností, že v dané literatuře se nepoužívá samotná hemicelulóza, ale xylan (O-acetyl-4-O-methylglukuronoxylan), což je hlavní složka hemicelulóz tvrdého dřeva, která se často používá jako modelová složka hemicelulóz. [7] Xylan se však svými fyzikálně-chemickými vlastnostmi může od hemicelulózy lišit. [19] V našem případě používáme hemicelulózu izolovanou z bukového dřeva. I když je známo, že hlavní složkou hemicelulóz tvrdého dřeva je právě xylan, je potřeba podotknout, že způsob izolace hemicelulózy z biomasy může mít vliv na fyzikálně-chemické vlastnosti získané suroviny a izolovaná hemicelulóza se svými vlastnostmi může od hemicelulózy zakomponované v biomase lišit. [11] Navíc xylan má obvykle formu žlutého prášku a hemicelulóza použitá v naši práci měla formu tekutého sirupu a obsahovala značné množství vody a dalších těkavých látek, což úzce souvisí se způsobem izolace z biomasy.

Tab. 3: Obsah vody a elementární složení surovin pro pyrolýzu v hm. % (elementární složení přepočteno na sušinu)

Tab. 3: Water content and elemental composition of pyrolysis feedstock in % wt. (elemental composition related to dry matter)

Sur.	% voda	% C	% H	% N	% S	% O
С	2,9	43,7	6,5	<lod< td=""><td><lod< td=""><td>49,8</td></lod<></td></lod<>	<lod< td=""><td>49,8</td></lod<>	49,8
Н	23,9	28,9	8,5	0,07	0,74	61,8
LSI	1,4	66,2	6,4	1,26	0,14	26,0
LSm	3,2	67,5	6,1	0,07	0,02	26,3
LB	3,3	65,7	6,1	0,20	0,03	28,0

3.1.2 TGA analýza surovin

Průběh TGA křivek surovin znázorňuje obr. 2. TGA analýzou byl zjištěn významný rozdíl v termickém chování celulózy, hemicelulózy a ligninu. U celulózy byla pozorována pomalá změna hmotnosti (do 10 %) do teploty ~330 °C. Následně v rozmezí teplot ~330 – 400 °C hmotnost prudce poklesla o přibližně 80 %. Hmotnostní pokles nad 400 °C byl již opět velice pozvolný a na konci analýzy zbylo asi 6 % tuhého zbytku.

U hemicelulózy byl pozorován prudký pokles hmotnosti (~45 %) v rozmezí teplot ~50 - 120 °C, následně v rozmezí ~120 – 150 °C došlo k ustálení a pokles hmotnosti byl velmi pomalý. Mezi 150 - 280 °C byl zaznamenán další prudký úbytek hmotnosti (~35 %). V rozmezí teplot ~280 - 730 °C byl úbytek hmotnosti velmi pozvolný (<5 %). Po 730 °C byl zaznamenán na TGA křivce další zlom. Lze předpokládat, že termické chování hemicelulózy v oblasti prvního zlomu, kde byl zaznamenán pokles hmotnosti o přibližně 45 %, bylo silně ovlivněno vysokým obsahem vody a jiných těkavých složek (kyselina octová, glykolaldehyd a jiné - stanoveno GC-MS analýzou). Obecně lze konstatovat, že k rozkladu hemicelulózy docházelo za nižších teplot v porovnání s celulózou (i ligninem). To je způsobeno amorfní strukturou hemicelulózy, přítomností termolabilních funkčních skupin a nižší molekulovou hmotností v porovnání s celulózou i ligninem. [7,19] Na konci analýzy bylo detekováno přibližně 4 % tuhého zbytku.

Obr. 2: TGA křivky surovin pro pyrolýzu **Fig. 2**: TGA curves of pyrolysis feedstocks

Rozklad ligninů se významně lišil od zbylých dvou surovin; mezi ligniny různého původu byly pozorovány jen malé rozdíly. Ligniny byly v porovnání s celulózou a hemicelulózou nejobtížněji rozložitelné, k jejich pomalému rozkladu docházelo v celém rozmezí teplot. Největší hmotnostní úbytek byl pozorován v rozmezí teplot ~300 – 450 °C, konečný podíl tuhého produktu byl poměrně vysoký, přibližně 40 – 45 %.

Celkově lze konstatovat, že TGA křivky analyzovaných surovin byly v dobré shodě s literárními daty. [7,19] Výjimkou bylo pouze termické chování hemicelulózy, a to zejména v oblasti přibližně do 120 °C, což, jak již zde bylo uvedeno, bylo způsobeno vysokým obsahem vody a dalších těkavých látek.

3.1.3 FTIR analýza surovin

FTIR spektra surovin jsou znázorněna na obr. 3. Typické vazby a funkční skupiny pozorované v těchto spektrech jsou prezentovány v tab. 4.

Obr. 3: FTIR spektra surovin **Fig. 2**: FTIR spectra of pyrolysis feedstocks

Tab. 4: Funkční skupiny ve FTIR spektrech surovin [16] **Tab. 4:** Functional groups in FTIR spectra of pyrolysis feedstocks [16]

Vlnová délka (cm ⁻¹)	Vazba, typ vibrace	Skupina					
3600-3000	O–H, valenční	kyseliny, alkoholy, voda					
2970-2860	C-H, valenční	alkyl, alifatika					
1730-1700	C=O, valenční	ketony, aldehydy					
1643	H-O-H, deformační	voda					
1601, 1512	C=C, valenční	aromáty					
1460-1425	C-H, deformační	alkyl, alifatika					
1417	O-H, deformační	alkoholy					
1282, 1253	C–O, valenční	kyseliny					
1262	C–O–C, valenční	alkyl–aryl ethery					
1217	C–O, valenční	fenoly					
1170, 1067, 896	C–O–C, valenční	pyranózový kruh					
1108	C–O, valenční	alkoholy					
1040	C–O–C, valenční	glykosidy					
870-	H–O–H, deformační	voda					
850-700	C–H	aromatický vodík					

Spektru hemicelulózy dominují zejména dva velmi intenzivní pásy. Široký pás v oblasti valenčních vibrací O–H vazeb (3600 – 3000 cm⁻¹) s maximem při 3300 cm⁻¹, na jehož intenzitě se výrazně podílí přítomná voda. Druhým je shluk překrývajících se pásů valenčních vibrací C–C–O a C–O–C vazeb (1088–990 cm⁻¹) s maximem při 1043 cm⁻¹. Zatímco C–C–O vazba pochází z C– O–H skupiny, C–O–C vazba pochází ze struktury hemiacetalu a glykosidové vazby. Další výraznější pásy (1641 cm⁻¹ a 650 cm⁻¹) jsou způsobeny deformačními vibracemi molekuly vody. Pozorována byla i přítomnost pásů způsobených valenčními $(2970 - 2860 \text{ cm}^{-1})$ a deformačními $(1488 - 1300 \text{ cm}^{-1})$ vibracemi C–H vazeb. Ve spektru nebyla pozorována přítomnost acetylových vazeb, které jsou typické pro *O*-acetyl-4-*O*-methylgluku-ronoxylan, který je dominantní složkou hemicelulózy tvrdých dřev. Nepřítomnost acetylových skupin byla pravděpodobně způsobena jejich rozštěpením v procesu izolace hemicelulózy z biomasy. [7]

Spektrum celulózy obsahovalo celkově podobné vazby (funkční skupiny) jako hemicelulóza. Byl zde pozorován pás v oblasti O–H vazeb, přičemž v tomto případě byl již méně ovlivněn přítomností vody, viz tab. 4. Zjištěn byl i výskyt pásů způsobených valenčními vibracemi vazeb C–O–C pocházejících z pyranózového kruhu, tj. cyklické formy glukózy, a z glykosidických vazeb.

Spektra ligninů se od spekter zbylých surovin lišila zejména v oblasti 1800 – 1100 cm⁻¹, kde byly pozorovány intenzivní charakteristické pásy vibrací karbonylové skupiny, aromatického kruhu a skupin přiléhajících na aromatický kruh (např. alkyl-aryl étery či fenoly) a alifatických částí řetězců.

3.2. Analýza bio-olejů

U bio-olejů bylo provedeno stanovení obsahu vody, elementární analýza, GC-MS analýza a analýza vysokorozlišovací hmotnostní spektrometrii typu orbitrap s využitím ionizačních technik ESI a APCI a detekcí záporných iontů.

Stanovení obsahu vody a elementární analýza byly provedeny pouze u vzorků PC a PH, tj. u bio-olejů z celulózy a hemicelulózy připravených pomalou pyrolýzou, viz tab. 5. U bio-oleje připraveného pomalou pyrolýzou ligninu ze slámy tyto analýzy provedeny nebyly. Důvodem bylo malé množství připraveného kapalného biooleje (v důsledku malého množství suroviny, které bylo k dispozici). Tento kapalný bio-olej ulpěl v aparatuře, ze které byl získán ve formě acetonového výplachu. Elementární analýza a stanovení obsahu vody nebylo prováděno vzhledem k neznámému množství acetonu použitého k proplachu. Ze stejného důvodu toto stanovení nebylo prováděno ani u vzorků PCAc a PHAc. Elementární analýza a stanovení obsahu vody nebyly rovněž prováděny ani u vzorků bio-olejů z rychlé pyrolýzy ligninů (RSI, RSm a RB), jelikož tyto bio-oleje byly dodány pouze v malých objemech (stovky µl) ve formě methanolového roztoku o neznámé koncentraci.

Tab. 5: Obsah vody a elementární složení vzorků PC a PH v hm. % (elementární složení přepočteno na sušinu) **Tab. 5:** Water content and elemental composition of samples PC and PH in % wt. (elemental composition related to dry matter)

Vz.	% voda	% C	% H	% N	% S	% O
PC	52,3	48,8	6,4	0,01	<0,01	44,8
PH	71,3	45,3	8,3	0,08	<0,01	46,3

3.2.1 GC-MS analýza bio-olejů

Chemické složení jednotlivých bio-olejů získané metodou GC-MS je prezentováno v tab. S1.

Bio-olej z celulózy byl složen zejména z anhydrosacharidů, furanů, ketonů a karboxylových kyselin. Složkou s nejvyšším zastoupením (dle plochy píků) byl levoglukozan, což je typický produkt pyrolýzy celulózy. K jeho vzniku dochází v důsledku depolymerizace celulózy, což je jeden ze dvou základních reakčních mechanizmů termického rozkladu celulózy. [7] Pyrolýza celulózy může poskytovat výtěžky levoglukozanu v rozmezí 20 - 70 %. [7] V této práci byl pozorován výtěžek levoglukozanu na dolní hranici uvedeného rozmezí (indikováno na základě plochy píku), což lze vysvětlit povahou pyrolyzního procesu, v rámci kterého byl vzorek PC připraven – jednalo se o pomalou pyrolýzu, u které je spíše upřednostňována fragmentace celulózy (štěpení cyklu), což je konkurenční reakční mechanizmus k depolymerizaci. [7] Ve vzorcích PC a rovněž PCAc byly v nižších zastoupeních detekovány fenoly a krezoly, které mohou vznikat v důsledku intramolekulárních dehydratačních reakcí celulózy vedoucích ke vzniku násobných C=C vazeb a následně ke tvorbě produktů aromatické povahy.[20]

Bio-olej z hemicelulózy obsahoval zejména karboxylové kyseliny, ketony, furany a deriváty sacharidů. V minoritním množství byly rovněž detekovány aromatické sloučeniny (fenoly, krezoly, guajakoly). Pík s největší intenzitou odpovídal pravděpodobně ethyl- β -D-ribosidu. Z typických produktů pyrolýzy hemicelulózy tvrdých dřev byl detekován 4-hydroxy-5,6-dihydro-2H-pyran-2-on. Detailnějším studiem GC-MS spekter složek hemicelulózy se budeme zabývat v dalších pracích.

Bio-oleje z rychlé termické pyrolýzy ligninů obsahovaly zejména aromatické sloučeniny (fenoly, methoxy- a dimethoxyfenoly). V minoritním množství byly detekovány sloučeniny nearomatické povahy, např. furany, ketony, estery, které mohou vznikat v důsledku štěpení aromatického kruhu. [7] Mezi bio-oleji z jednotlivých ligninů byly pozorovány rozdíly, který vyplývaly zejména z jejich rozdílné struktury. Přítomnost dimethoxyfenolů (odvozených z S jednotek) byla pozorována prakticky pouze u ligninu z bukového dřeva. Oproti tomu přítomnost methoxyfenolů (odvozených od G jednotek) byla pozorována u všech ligninů.

Chemické složení ligninových bio-olejů z katalytické pyrolýzy se významně lišilo od ligninových olejů z termické pyrolýzy. Byla zde pozorována přítomnost významně vyššího množství bezkyslíkatých aromatických sloučenin jako např. alkylbenzeny, alkylnaftaleny a jiné.

4. Závěr

V této práci byla provedena analýza základních fyzikálně-chemických vlastností celulózy, hemicelulózového sirupu izolovaného z bukového dřeva a ligninů izolovaných z bukového a smrkového dřeva a ze slámy. Dále byla provedena pyrolýza těchto surovin a analýza fyzikálně-chemických vlastností vzniklých bio-olejů a analýza jejich těkavého podílu metodou GC-MS. Hlavním produktem pyrolýzy celulózy byl levoglukozan; dalšími přítomnými složkami byly další anhydrosacharidy, furany, ketony a karboxylové kyseliny. Bio-olej z hemicelulózy obsahoval hlavně karboxylové kyseliny, ketony, furany a deriváty sacharidů. Na složení bio-olejů z ligninů měl značný vliv typ pyrolyzního procesu (termický, katalytický) a také původ ligninu. Ligninové bio-oleje připravené katalytickou pyrolýzou obsahovaly značné množství bezkyslíkatých aromatických sloučenin jako např. alkylbenzeny, alkylnaftaleny a jiné. Na druhé straně u ligninových bio-olejů z termické pyrolýzy byly majoritními produkty methoxyfenoly a dimethoxyfenoly (pozorované pouze u bukového ligninu). Získané výsledky poslouží jako základ k hlubšímu studiu struktury těkavých podílů bio-olejů z biomasy.

Poděkování

Práce byla realizována s podporou Ministerstva školství, mládeže a tělovýchovy České republiky z národního programu udržitelnosti (NPU I LO1613, MSMT-43760/2015). Autoři děkují panu Dr. Moritzi Leschinskému z centra Fraunhofer, Leuna CBP za dodání vzorků hemicelulózy a ligninů a panu Dr. Kostasi Triantafyllidisovi z Aristotelovy univerzity v Soluni za dodání bioolejů z rychlé pyrolýzy ligninů.

Seznam použitých zkratek

ATR	zeslabený úplný odraz (angl. attenuated total
	reflectance)
С	celulóza
GC	plynová chromatografie
$GC \times GC$	úplná dvourozměrná plynová chromatografie
GPC	gelová permeační chromatografie
FTIR	infračervená spektroskopie s Fourierovou
	transformací
Н	hemicelulóza
LB	lignin izolovaný z bukového dřeva
LC	kapalinová chromatografie
LOD	mez detekce
LSI	lignin izolovaný ze slámy
LSm	lignin izolovaný ze smrkového dřeva
MS	hmotnostní spektrometrie
NMR	nukleární magnetická rezonance
TGA	termogravimetrická analýza

5. Literatura

- Oasmaa A., Van De Beld B., Saari P., Elliott D.C., Solantausta Y.: Norms, Standards, and Legislation for Fast Pyrolysis Bio-oils from Lignocellulosic Biomass; Energy Fuels 29, 2015, 2471.
- Staš M., Kubička D., Chudoba J., Pospíšil M.: Prehľad aplikácií pyrolýzneho bio-oleja; Chem. Listy 109, 2015, 499.
- 3. Crocker M., Andrews R.: The Rationale for Biofuels, v knize Thermochemical conversion of biomass to liquid fuels and chemicals, Editor M. Crocker, Royal Society of Chemistry, Cambridge, 2010.

- Lehto J., Oasmaa A., Solantausta Y., Kytö M., Chiaramonti D.: Review of fuel oil quality and combustion of fast pyrolysis bio-oils from lignocellulosic biomass; Appl. Energ. 116, 2014, 178.
- 5. Kanaujia P.K., Sharma Y., Agrawal U., Garg M.: Analytical approaches to characterizing pyrolysis oil from biomass; Trends Anal. Chem. 42, 2013, 125.
- Staš M., Kubička D., Chudoba J., Pospíšil M.: Overview of Analytical Methods Used for Chemical Characterization of Pyrolysis Bio-oil; Energy Fuels 28, 2014, 385.
- 7. Jakab E.: Analytical techniques as a tool to understand the reaction mechanism, v knize Recent advances in thermo-chemical conversion of biomass. Elsevier, Amsterdam, 2015.
- Shen D., Gu S.: The mechanism for thermal decomposition of cellulose and its main products; Bioresource Technol. 100, 2009, 6496.
- Shen D., Xiao R., Gu S., Zhang H.: The overview of thermal decomposition of cellulose in lignocellulosic biomass, v knize Cellulose - Biomass Conversion, Editoři T.v.d. Ven a J. Kadla. InTechOpen, London 20133.
- Staš M., Chudoba J., Kubička D., Blažek J., Pospíšil M.: Petroleomic Characterization of Pyrolysis Biooils: A Review; Energy Fuels 31, 2017, 10283.
- 11. Wang S., Luo Z.: Pyrolysis of biomass. Vol. 1.: Walter de Gruyter GmbH & Co KG, Berlin, 2017.
- Hao N., Ben H., Yoo C.G., Adhikari S., Ragauskas A.J.: Review of NMR characterization of pyrolysis oils; Energy Fuels 30, 2016, 6863.
- Michailof C.M., Kalogiannis K.G., Sfetsas T., Patiaka D.T., Lappas A.A.: Advanced analytical techniques for bio-oil characterization; WIREs Energy Environ. 5, 2016, 614.
- 14. Barger A., Skoblia S.: Studium produktu pyrolýzy vzorku dřevních pelet při vsázkové pyrolýze v rozmezí teplot 400 až 800 °C. Energie z biomasy XI, Brno, 2010. Plný text ve sborníku, str. 19.
- 15. Triantafyllidis K.S., Iliopoulou E.F., Antonakou E.V., Lappas A.A., Wang H., Pinnavaia T.J.:: Hydrothermally stable mesoporous aluminosilicates (MSU-S) assembled from zeolite seeds as catalysts for biomass pyrolysis; Micropor. Mesopor. Mat. 99, 2007, 132.
- Zhao C., Jiang E., Chen A.: Volatile production from pyrolysis of cellulose, hemicellulose and lignin; J. Energy Inst. 90, 2017, 902.
- Liu M., Yang J., Liu Z., He W., Liu Q., Li Y., Yang Y.: Cleavage of covalent bonds in the pyrolysis of lignin, cellulose, and hemicellulose; Energy Fuels 29, 2015, 5773.
- 18. Michailof C., Sfetsas T., Stefanidis S., Kalogiannis K., Theodoridis G., Lappas A.: Quantitative and qualitative analysis of hemicellulose, cellulose and lignin bio-oils by comprehensive two-dimensional gas chromatography with time-of-flight mass spectrometry; J. Chromatogr. A 1369, 2014, 147.

- 19. Yang H., Yan R., Chen H., Lee D.H., Zheng C.: Characteristics of hemicellulose, cellulose and lignin pyrolysis; Fuel 86, 2007, 1781.
- 20. Collard F.-X., Blin J.: A review on pyrolysis of biomass constituents: Mechanisms and composition of the products obtained from the conversion of cellulose, hemicelluloses and lignin; Renew. Sust. Energ. Rev. 38, 2014, 594.

Summary

Analysis of a Volatile Fraction of Bio-oils from Pyrolysis of Cellulose, Hemicellulose and Lignins

Martin Staš, Aneta Závodníková, Siarhei Skoblia, Miloš Auersvald, Dan Vrtiška, Pavel Šimáček and David Kubička

Pyrolysis bio-oil is a liquid product of biomass pyrolysis, which is considered to be a potential biofuel or source of valuable oxygen-containing chemicals. To further develop the use of pyrolysis bio-oils, a sufficient knowledge of their chemical composition is required. In this work, we studied he chemical composition of biooils from slow and fast pyrolysis of the basic building components of biomass, i.e., cellulose, hemicellulose and lignin. The study is presented in two articles. Here, in the first part, we present (i) the results of the analyses of pyrolysis feedstock, (ii) the preparation of bio-oils and (iii) the structural analysis of their volatile fractions. The volatile fractions were analysed using GC-MS. In the second part, analyses of non-volatile fractions of the cellulose, hemicellulose and lignin bio-oils will be presented. The obtained results can help us to understand the chemical composition of entire bio-oils from biomass and achieve their more widespread use.

C1	<u> 21</u>	N	M	RČ						Vzore	k				
Skupina	Sloucenina	vzorec	[g/mol]	[min]	PC	PCAc	PH	PHAc	PSlAc	RSIK	RSIT	RSmK	RSmT	RBK	RBT
	formaldehyd	CH2O	30	1,43	+	_	_	_	_	_	_	_	_	_	_
Alde-	2-hydroxyacetaldehyd (glyko- laldehyd)	C2H4O2	60	1,81	+	_	_	_	—	_	_	_	_	_	_
nyay	but-2-enal (krotonaldehyd)	C4H6O	70	2,20	+	_	_	_	_	_	_	_	_	_	_
	glyceraldehyd	C3H6O3	90	6,73	_	_	+	_	_	_	_	_	_	_	_
Alko-	methanol	CH4O	32	1,62	+	_	+	_	_	_	_	_	_	_	_
holy	ethanol	C2H6O	46	1,68	_	_	+	_	_	_	_	_	_	_	_
Estery	methylformiát	C2H4O2	60	1,98	_	_	+	_	_	_	_	_	_	_	_
	ethylglykolát	C4H8O3	104	4,04	_	_	+	_	_	_	_	_	_	_	-
	acetoxyaceton	C5H8O3	116	6,26	_	_	+	_	_	_	_	_	_	_	-
	kyselina mravenčí	CH2O2	46	1,64	+	+	+	+	_	_	_	_	_	_	-
Kyseliny	kyselina octová	C2H4O2	60	1,90	+	+	+	+	_	_	_	_	_	_	-
	kyselina propionová	C3H6O2	74	2,62	+	+	+	+	+	_	_	_	_	_	-
	methylfuran	C5H6O	82	3,31	+	_	_	_	_	_	_	_	_	_	-
	furfural	C5H4O2	96	5,25	+	+	+	+	+	_	_	_	_	_	_
	furfuryl alkohol	C5H6O2	98	5,95	_	_	+	+	_	_	_	_	_	_	_
	2-propylfuran	C7H10O	110	6,07	+	_	_	_	_	_	_	_	_	_	_
	2-acetylfuran	C6H6O2	110	7,05	+	_	_	_	_	_	_	_	_	_	_
F	5H-furan-2-on	C4H4O2	84	7,12	+	_	_	_	_	_	_	_	_	_	_
Furany	2-furanmethanol	C5H6O2	98	7,22	+	_	_	_	_	_	_	_	_	_	_
	5-methyl-5H-furan-2-on	C5H6O2	98	7,60	+	_	+	_	_	_	_	_	_	_	_
	5-methylfurfural	C6H6O2	110	8,04	+	+	+	_	_	_	_	_	_	_	_
	4-methyl-5H-furan-2-on	C5H6O2	98	9,30	+	+	_	_	_	_	_	_	_	_	_
	2,3-dihydrobenzofuran (couma- ran)	C8H8O	120	11,38	_	_	_	_	+	+	_	_	_	_	_
	5-(hydroxymethyl)furfural	C6H6O3	126	11,54	+	+	_	_	_	_	_	_	_	_	_

C1		N. A. M. M. A. M. M. A. M. A. M.	М	RČ						Vzore	k				
Skupina	Sloucenina	vzorec	[g/mol]	[min]	PC	PCAc	PH	PHAc	PSlAc	RSIK	RSIT	RSmK	RSmT	RBK	RBT
	aceton	C3H6O	58	1,60	+	_	+	_	_	_	_	_	_	_	-
	1-hydroxypropan-2-on (acetol)	C3H6O2	74	2,30	+	+	+	+	_	_	_	_	_	_	_
	pentan-2,3-dion	C5H8O2	100	2,55	+	_	_	_	_	_	_	_	_	_	_
	pent-3-en-2-on	C5H8O	84	3,12	+	_	_	_	_	_	_	_	_	_	_
	1-hydroxy-butan-2-on	C4H8O2	88	3,60	+	_	+	_	_	_	_	_	_	_	_
	3-methylpent-4-en-2-on	C6H10O	98	6,16	+	_	_	_	_	_	_	_	_	_	_
	cyklopent-4-en-1,3-dion	C5H4O2	96	6,49	+	_	_	_	_	_	_	_	_	_	_
Katony	2-methylcyklopent-2-en-1-on	C6H8O	96	6,96	+	_	_	_	_	_	_	_	_	_	_
Ketoliy	2-hydroxycyklopent-2-en-1-on	C5H6O2	98	7,34	+	+	_	_	_	_	_	_	_	_	_
	6-methylheptan-3-on	C8H16O	128	7,72	_	_	+	_	_	_	_	_	_	_	_
	3-methylcyklohex-3-en-1-on	C7H10O	110	8,29	+	_	_	_	_	_	_	_	_	_	_
	2-hydroxy-χ-butyrolakton	C4H6O3	102	8,51	_	_	+	_	_	_	_	_	_	_	_
	2-hydroxy-3-methylcyklopent- 2-enon (korylon)	C6H8O2	112	8,85	+	+	+	+	_	_	_	_	_	_	_
	3-methyl-cyklopentan-1,2-dion	C6H8O2	112	9,07	+	+	+	+	_	_	_	_	_	_	_
	furyl(hydroxymethyl)keton	C6H6O3	126	9,84	+	+	_	_	_	_	_	_	_	_	_
	levoglukozenon	C6H6O3	126	10,22	+	+	_	_	_	_	_	_	_	_	_
Sacha- ridy	1,4:3,6-dianhydro-α-D-gluco- pyranose	C6H8O4	144	11,39	+	_	_	_	_	_	_	_	_	_	_
a deri-	ethyl β-D-ribosid	C7H14O5	178	13,13	_	_	+	_	_	_	_	_	_	_	_
vaty	levoglukozan	C6H10O5	162	15,04	+	+	_	_	_	_	_	_	_	_	_
	3,4-dihydro-2H-pyran	C5H8O	84	7,15	_	_	+	_	_	_	_	_	_	_	-
Pyrany	4-hydroxy-5,6-dihydro-2H-py- ran-2-on	C5H6O3	114	8,62	+	+	_	_	_	_	_	—	_	_	_
	2,3-dihydro-3,5-dihydroxy-6- methyl-4H-pyran-4-on	C6H8O4	144	10,59	_	+	_	_	-	_	_	_	-	_	_
	3,5-dihydroxy-2-methyl-4H- pyran-4-on	C6H6O4	142	11,09	+	+	_	_	_	_	_	_	_	_	_

Skuping	Sloužoning	V	М	RČ	Vzorek										
Skupina	Sloucenina	vzorec	[g/mol]	[min]	PC	PCAc	PH	PHAc	PSlAc	RSIK	RSIT	RSmK	RSmT	RBK	RBT
	methylanisol	C8H10O	122	8,98	_	_	_	_	+	_	_	_	-	_	-
	2-methoxyfenol (guajakol)	C7H8O2	124	9,93	—	_	+	+	+	+	+	+	+	+	+
	dimethylanisol	C9H12O	136	10,19	_	_	_	_	_	_	_	_	+	_	_
	3-methylguajakol	C8H10O2	138	11,00	—	_	+	_	+	+	+	+	+	+	+
	4-methylguajakol	C8H10O2	138	11,09	_	_	_	_	+	_	+	_	+	_	+
	4-ethylguajakol	C9H12O2	152	12,07	_	_	+	_	+	_	+	_	+	_	+
Methoxy	4-vinylguajakol	C9H10O2	150	12,42	_	_	+	_	+	-	+	_	+	_	+
fenoly	eugenol	C10H12O2	164	12,87	_	_	_	_	+	-	+	_	+	_	+
	4-propylguajakol	C10H14O2	166	12,92	_	_	_	_	+	_	+	_	+	_	+
	vanilín	C8H8O3	152	13,25	_	_	_	_	+	_	+	_	+	_	+
	cis-isoeugenol	C10H12O2	164	13,31	_	_	_	_	+	-	+	_	+	_	+
	trans-isoeugenol	C10H12O2	164	13,68	_	_	_	_	+	_	+	_	+	_	+
	acetoguajakon	C9H10O3	166	14,02	_	_	_	_	+	_	+	_	+	_	+
	guaiacylaceton	C10H12O3	180	14,39	_	_	+	+	+	_	+	_	+	_	+
	2,6-dimethoxyfenol (syringol)	C8H10O3	154	12,76	_	_	+	+	+	_	+	_	+	_	+
	4-methylsyringol	C9H12O3	168	13,63	_	_	_	_	_	_	_	_	_	_	+
Dimet-	syringaldehyd	C9H10O4	182	15,42	_	_	+	+	_	_	_	_	_	_	+
hoxy	4-allylsyringol	C11H14O3	194	14,94	_	_	_	_	_	_	_	_	_	_	+
fenoly	4-propylsyringol	C11H16O3	196	15,00	_	_	_	_	_	_	_	_	_	_	+
	acetosyringon	C10H12O4	196	15,98	_	_	+	_	_	_	_	_	_	_	+
	syringyl aceton	C11H14O4	210	16,24	_	_	+	+	_	-	_	_	_	_	+
	propiosyringon	C11H14O4	210	16,64	_	_	+	_	_	_	_	_	_	_	+
	fenol	C6H6O	94	8,35	+	+	_	_	+	+	+	+	+	+	+
	2-methylfenol (o-krezol)	C7H8O	108	9,44	+	+	_	+	+	+	+	+	+	+	+
Famala	3-/4-methylfenol (m-/p-krezol)	C7H8O	108	9,72	+	+	_	+	+	+	+	+	+	+	+
renoty	dimethylfenol (xylenol)	C8H10O	122	10,61	+	_	+	+	+	+	+	+	+	+	+
	4-ethylfenol	C8H10O	122	10,82	_	_	_	_	+	_	+	_	_	_	_
	methylbenzendiol	C7H8O2	124	12.13	_	_	_	_	_	_	+	_	+	_	+

Clauning	Sloužanina	Vacaza	М	RČ	Vzorek										
Skupina	Sloucenna	v zorec	[g/mol]	[min]	PC	PCAc	PH	PHAc	PSlAc	RSIK	RSIT	RSmK	RSmT	RBK	RBT
	benzen	C6H6	78	2,44	_	_	_	-	_	+	_	_	-	_	_
	toluen	C7H8	92	3,76	—	_	_	_	+	+	+	+	+	+	+
	(m-/p-xylen)	C8H10	106	6,27	_	+	_	_	+	+	+	+	+	+	+
	o-xylen	C8H10	106	6,73	_	_	_	_	_	+	_	+	_	+	_
	alkylbenzen	C9H12	120	8,04	_	_	_	_	_	_	_	+	_	+	_
Aromátu	alkylbenzen	C9H12	120	8,36	_	_	_	_	_	_	_	_	_	+	_
Alomaty	alkylbenzen	C9H12	120	8,59	_	_	_	_	_	+	_	+	_	+	_
	alkylbenzen	C10H14	134	9,87	_	_	_	_	_	_	_	_	_	+	_
	alkylbenzen	C10H14	134	10,27	_	_	_	_	_	_	_	+	_	+	_
	naftalen	C10H8	128	11,12	_	_	_	_	_	+	_	+	_	+	_
	methylnaftalen	C11H10	142	12,29	_	_	_	_	_	+	_	+	_	+	_
	methylnaftalen	C11H10	142	13,24	_	_	_	_	_	+	_	+	_	+	_